首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Wang  D S Beattie 《Biochemistry》1992,31(36):8455-8459
In a recent study [Wang & Beattie (1991) Arch. Biochem. Biophys. 291, 363-370], we reported that dicyclohexylcarbodiimide (DCCD) inhibited proton translocation in the cytochrome bf complex reconstituted into proteoliposomes and was bound selectively to cytochrome b6. To establish the site of binding of DCCD on cytochrome b6, the cytochrome bf complex labeled with [14C]DCCD was selectively digested with chymotrypsin and trypsin. A 17-kDa fragment containing radioactive DCCD and the heme moiety was obtained after chymotrypsin digestion, while a 12.5-kDa fragment containing both radioactive DCCD and the heme moiety was obtained after trypsin digestion, suggesting that the site of DCCD binding might be on aspartate-140, aspartate-155, or glutamate-166. Extensive digestion of cytochrome b6 isolated from a [14C]DCCD-labeled cytochrome bf complex with trypsin followed by isolation and sequencing of two radioactive peptides obtained revealed that DCCD is bound at either residue aspartate-155 or residue glutamate-166 localized in amphipathic extramembranous helix IV. In addition, the cytochrome bf complex labeled with [14C]DCCD was reconstituted into liposomes and digested with trypsin. Three fragments of 9.3, 10.5, and 11.5 kDa were obtained, suggesting that the four-helix model for the topography of cytochrome b6 in the membrane is correct.  相似文献   

2.
Treatment of complex III with dicyclohexyldicarbodiimide (DCCD) either before or after incorporation into liposomes resulted in a loss of electrogenic proton movements; however, only minimal decreases in cytochrome c reductase activity were noted in the liposomes containing DCCD-treated complex III. Thus, DCCD appears to act by "uncoupling" proton translocation from electron transport. A decreased sensitivity of the ubiquinol:cytochrome c reductase activity to antimycin was also noted in the DCCD-treated complex III. This loss of sensitivity to antimycin was reflected in a decreased binding of antimycin to the complex after DCCD treatment from 9.5 nmol/mg of protein in the control to 3.8 nmol/mg of protein in the DCCD-treated complex. DCCD also affected the red shift observed after antimycin addition to dithionite-reduced complex III resulting in a broad peak with no sharp maximum. Similarly, DCCD treatment of yeast mitochondria resulted in a complete loss in the red shift after antimycin addition to mitochondria previously reduced with succinate. No loss in enzymatic activity was observed in the DCCD-treated mitochondria. These results suggest that DCCD concomitant with the inhibition of proton ejection in the cytochrome b-c1 region of the respiratory chain causes modifications in the properties of cytochrome b which alter the binding of antimycin without significantly affecting the electron transfer activity of this cytochrome.  相似文献   

3.
The electron transfer activity of purified cytochrome b6-f complex of spinach chloroplast is inhibited by dicyclohexylcarbodiimide (DCCD) in a concentration and incubation time dependent manner. The maximum inhibition of 75% is observed when 300 mole of DCCD per mole of protein (based on cytochrome f) is incubated with cytochrome b6-f complex at room temperature for 40 min. The inhibition of the complex is not due to the formation of cross links between subunits but due to the modification of carboxyls. The amount of DCCD incorporation is directly proportional to the activity loss, suggesting that some carboxyl groups in the complex are directly or indirectly involved in the catalytic function. The incorporated DCCD is located mainly at cytochrome b6 protein. The partially inhibited complex shows the same H+/e-ratio as that of the intact complex when embedded in phospholipid vesicles.  相似文献   

4.
The triorganotin compounds triphenyltin chloride and tributyltin chloride have been known as inhibitors of the transmembrane proton channel forming F0-domain of ATPases at micromolar concentrations. We show that these compounds at higher concentrations (10–100 µM) also inhibit uncoupled electron transport in chloroplasts within the low potential chain of the cytochrome bf complex. They cause high levels of transiently reduced cytochrome b563 as they decelerate the reoxidation process in flash illuminated chloroplasts. At the same time they slow down the flash induced slow electrogenic step generated at the cytochrome bf complex. The inhibitory effect of triphenyltin chloride on cytochrome b563 turnover in chloroplasts is comparable to that of the Qn-inhibitor MOA-stilbene, with even less side effects on the high potential chain. Studies on the isolated bf complex suggest different binding sites for triorganotins and the quinone analogue type Qn-inhibitors. The results are interpreted within the framework of the modified Q-cycle model by a putative organotin sensitive proton translocating site which enables proton transfer from the outer aqueous face of the membrane to the hydrophobic quinone reduction site within the complex. Hence, cytochrome b563 oxidation and plastoquinone reduction may be inhibited as a consequence of proton transfer being suppressed by triorganotins. In analogy, the previously described inhibitory effect of Val/K+ at the n-side of the cytochrome bf complex [Klughammer and Schreiber (1993) FEBS 336: 491–495] may be rationalised by binding of the cyclic depsipeptide at the entrance of the proton path to the Qn-site.  相似文献   

5.
Isolated cytochrome complexes from different sources like beef heart mitochondria, spinach chloroplasts, cyanobacteria, and photosynthetic bacteria were incorporated into liposomes by sonication as revealed by sucrose density gradient centrifugation and electron microscopy. The reconstituted cytochrome complexes show suppressed rates of quinol-cytochrome c/plastocyanin oxidoreduction which can be stimulated by ionophores and uncouplers. In addition, extra proton translocation out of the vesicles and membrane potential generation during electron transport were observed, suggesting a universal mechanism of electron and proton transport through all the tested cytochrome complexes.  相似文献   

6.
The primary effect of dicyclohexylcarbodiimide (DCCD) at the cytochrome b-c1 region of the respiratory chain of rat liver mitochondria is an inhibition of proton translocation. No significant decrease was observed in the rate of electron flow from succinate to cytochrome c when measured as cytochrome c reductase, K3Fe(CN)6 reductase, or the rate of H+ release in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone after treatment with sufficient DCCD to abolish completely electrogenic proton ejection. The inhibitory effects of DCCD were time and concentration dependent and affected by the pH of the medium. Lowering the pH from 7.3 to 6.7 resulted in a progressively faster rate and extent of inhibition of proton ejection by DCCD. At pH 6.9, the H+/2e- decreased by 50% within 30 s after DCCD addition; however, at pH 7.3, a 50% decrease was not observed until 2 min after DCCD addition. DCCD did not act as an uncoupler as both the rate of proton ejection and back decay were decreased after incubation with DCCD. Treatment of rat liver mitochondria with DCCD under these same conditions also resulted in a broadening of the sharp spectral shift of cytochrome b observed after antimycin addition to mitochondria previously reduced with succinate suggesting that DCCD may modify cytochrome b in such a way that the binding of antimycin is altered.  相似文献   

7.
A purified cytochrome b-c1 complex isolated from yeast mitochondria has been reconstituted into proteoliposomes. The reconstituted comp]lex catalyzed antimycin A-sensitive electron transfer from different analogues of coenzyme Q to cytochrome c. The reconstituted complex was also capable of energy conservation as indicated by uncoupler-stimulated rates of electron transfer, electrogenic proton ejection, and reversed electron flow from cytochrome b to coenzyme Q2 in the presence of antimycin A driven by a valinomycin-induced K+-diffusion potential (negative inside). Close to four protons were ejected per two electrons transported through the reconstituted b-c1 complex with ferricyanide as an artificial and impermeable electron acceptor.l The H+/2e- ratio decreased to two in the presence of the proton-conducting agent, carbonyl cyanide m-chlorophenylhydrazone. The same processes were studied in parallel in energy-conserving site 2 of rat liver mitochondria with similar results. In the reconstituted b-c1 complex, dicyclohexylcarbodiimide (DCCD) blocked the function of the electrogenic proton translocating device in the forward direction of proton ejection as well as in the backwards direction, measured as reversed electron flow from cytochrome b to coenzyme Q2 driven by a K+-diffusion potential. The primary effect of DCCD is localized on the proton ejection process, as the low proton conductance of the proteoliposome membrane was totally preserved after DCCD treatment.  相似文献   

8.
We report here that N,N'-dicyclohexylcarbodiimide (DCCD) decreases the H/2e stoichiometry of the cytochrome bc1 complex from 3.8 +/- 0.2 (10) to 2.1 +/- 0.1 (8) but has only a minimal effect on the H/2e ratio of cytochrome oxidase under the relatively mild conditions used. The effect on the bc1 complex cannot be explained by uncoupling, by inhibition of electron transport or by selective mitochondrial damage. We conclude that DCCD is an inhibitor of proton translocation within the bc1 complex. There are three possible explanations of this effect: (a) DCCD could alter the pathway of electron flow, (b) DCCD could prevent one of the proton translocation reactions but not electron transport, (c) DCCD could prevent the conduction of the translocated proton to the external phase.  相似文献   

9.
Incubation of soluble complex III isolated from either yeast or beef heart mitochondria with 25-100 nmol of [14C]dicyclohexylcarbodiimide (DCCD)/nmol of cytochrome b followed by centrifugation through 10% sucrose or precipitation with trichloroacetic acid did not result in any changes in the appearance of the subunits of either complex. The [14C]DCCD was bound to cytochrome b and phospholipids in the yeast complex and with similar kinetics to both cytochrome b and subunit VIII (Mr = 4000-8000) plus phospholipids of the beef complex. Subunit VIII of the beef complex was partially extracted with chloroform:methanol; however, no subunit of this mobility was present in the yeast complex. Incubation of the beef complex in phosphate buffer for short times resulted in a doubling of the [14C]DCCD bound to cytochrome b relative to that to subunit VIII. Preincubation of both complexes with venturicidin prior to treatment with DCCD resulted in a 50% decrease in the binding of [14C]DCCD to cytochrome b. Reisolation of the beef complex III by precipitation with (NH4)2SO4 after incubation with [14C]DCCD resulted in the formation of a new band with an apparent molecular weight of 39,000 even in the zero time control. The [14C]DCCD was bound to subunit VIII and the core proteins but not to cytochrome b at all times, suggesting that precipitation with (NH)2SO4 in the presence of DCCD causes cross-linking of the subunits of complex III.  相似文献   

10.
The cytochrome bf complex, which links electron transfer from photosystem II to photosystem I in oxygenic photosynthesis, has not been amenable to site-directed mutagenesis in cyanobacteria. Using the cyanobacterium Synechococcus sp. PCC 7002, we have successfully modified the cytochrome b(6) subunit of the cytochrome bf complex. Single amino acid substitutions in cytochrome b(6) at the positions D148, A154, and S159 revealed altered binding of the quinol-oxidation inhibitors 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), myxothiazol, and stigmatellin. Cytochrome bf and mitochondrial-type cytochrome bc(1) complexes are closely related in structure and function but exhibit quite different inhibitor specificities. Cytochrome bf complexes are insensitive to myxothiazol and sensitive to DBMIB, whereas cytochrome bc(1) complexes are sensitive to myxothiazol and relatively insensitive to DBMIB. Measurements of flash-induced and steady-state electron transfer rates through the cytochrome bf complex revealed increased resistance to DBMIB in the mutants A154G and S159A, increased resistance to stigmatellin in A154G, and created sensitivity to myxothiazol in the mutant D148G. Therefore these mutations made the cytochrome bf complex more like the cytochrome bc(1) complex. This work demonstrates that cyanobacteria can be used as effective models to investigate structure-function relationships in the cytochrome bf complex.  相似文献   

11.
A kinetic model of the cytochrome bf complex was developed on the assumption that the Q-cycle operates. The bf complex was considered as a membrane enzyme catalyzing the electron transfer from plastoquinol to plastocyanine, which is coupled with proton translocation from the chloroplast stroma to the thylakoid lumen. The dependence of the electron transfer rates on the value of the transmembrane electric potential was taken into account. The model was applied to describe the experimental data on the flash-induced turnover of cytochromes b, plastocyanine, and the kinetics of proton deposition in the thylakoid lumen. The estimation of model parameters was performed.  相似文献   

12.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit steady-state proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. In chromatophores of the purple bacterium Rhodobacter sphaeroides, this has been associated with the specific labeling of a surface-exposed aspartate-187 of the cytochrome b subunit of the bc(1) complex [Wang et al. (1998) Arch. Biochem. Biophys. 352, 193-198]. To explore the possible role of this amino acid residue in the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and the electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores from wild type (WT) and mutant cells, in which aspartate-187 of cytochrome b (Asp(B187)) has been changed to asparagine (mutant B187 DN). The kinetics and amplitude of phase III of the electrochromic shift of carotenoids, reflecting electrogenic reactions in the bc(1) complex, and of the redox changes of cytochromes and reaction center, were similar (+/- 15%) in both WT and B187DN chromatophores. DCCD effectively inhibited phase III of the carotenoid bandshift in both B187DN and WT chromatophores. The dependence of the kinetics and amplitude of phase III of the electrochromic shift on DCCD concentration was identical in WT and B187DN chromatophores, indicating that covalent modification of Asp(B187) is not specifically responsible for the effect of DCCD-induced effects of cytochrome bc(1) complex. Furthermore, no evidence for differential inhibition of electrogenesis and electron transport was found in either strain. We conclude that Asp(B187) plays no crucial role in the protonogenic reactions of bc(1) complex, since its replacement by asparagine does not lead to any significant effects on either the electrogenic reactions of bc(1) complex, as revealed by phase III of the electrochromic shift of carotenoids, or sensitivity of turnover to DCCD.  相似文献   

13.
The interaction between plastocyanin and the intact cytochrome bf complex, both from spinach, has been studied by stopped-flow kinetics with mutant plastocyanin to elucidate the site of electron transfer and the docking regions of the molecule. Mutation of Tyr-83 to Arg or Leu provides no evidence for a second electron transfer path via Tyr-83 of plastocyanin, which has been proposed to be the site of electron transfer from cytochrome f. The data found with mutations of acidic residues indicate that both conserved negative patches are essential for the binding of plastocyanin to the intact cytochrome bf complex. Replacing Ala-90 and Gly-10 at the flat hydrophobic surface of plastocyanin by larger residues slowed down and accelerated, respectively, the rate of electron transfer as compared with wild-type plastocyanin. These opposing effects reveal that the hydrophobic region around the electron transfer site at His-87 is divided up into two regions, of which only that with Ala-90 contributes to the attachment to the cytochrome bf complex. These binding sites of plastocyanin are substantially different from those interacting with photosystem I. It appears that each of the two binding regions of plastocyanin is split into halves, which are used in different combinations in the molecular recognition at the two membrane complexes.  相似文献   

14.
In oxygenic photosynthesis, plastocyanin shuttles electrons between the membrane-bound complexes cytochrome b6f and photosystem I. The homologous complex between cytochrome f and plastocyanin, both from spinach, is the object of this study. The solution structure of the reduced spinach plastocyanin was determined using high field NMR spectroscopy, whereas the model structure of oxidized cytochrome f was obtained by homology modeling calculations and molecular dynamics. The model structure of the intermolecular complex was calculated using the program AUTODOCK, taking into account biological information obtained from mutagenesis experiments. The best electron transfer pathway from the heme group of cytochrome f to the copper ion of plastocyanin was calculated using the program HARLEM, obtaining a coupling decay value of 1.8 x 10(-4). Possible mechanisms of interaction and electron transfer between plastocyanin and cytochrome f were discussed considering the possible formation of a supercomplex that associates one cytochrome b6f, one photosystem I, and one plastocyanin.  相似文献   

15.
A preparation is described through which large quantities of pure, active cytochrome b6/f complex can be isolated from spinach chloroplasts. The resulting complex is at least 90% pure with respect to the maximum content of redox centers, consists of four polypeptides according to polyacrylamide gel electrophoresis, and lacks both ferredoxin: NADP+ oxidoreductase and the high molecular weight form of cytochrome f seen in some other preparations. The complex contains 2 mol b6 and 2 atoms of nonheme iron per mole of cytochrome f, and possesses a high plastoquinol-plastocyanin oxidoreductase activity (Cyt f turnover no. 20-35 s-1). The present preparation should be helpful in the effort to crystallize the cytochrome b6/f complex.  相似文献   

16.
Action of DCCD on the H+/O stoichiometry of mitoplast cytochrome c oxidase   总被引:1,自引:0,他引:1  
The mechanistic H+/O ejection stoichiometry of the cytochrome c oxidase reaction in rat liver mitoplasts is close to 4 at level flow when the reduced oxidase is pulsed with O2. Dicyclohexylcarbodiimide (DCCD) up to 30 nmol/mg protein fails to influence the rate of electron flow through the mitoplast oxidase, but inhibits H+ ejection. The inhibition of H+ ejection appears to be biphasic; ejection of 2-3 H+ per O is completely inhibited by very low DCCD, whereas inhibition of the remaining H+ ejection requires very much higher concentrations of DCCD. This effect suggests the occurrence of two types of H+ pumps in the native cytochrome oxidase of mitoplasts.  相似文献   

17.
G M Soriano  W A Cramer 《Biochemistry》2001,40(50):15109-15116
Plastoquinol oxidation and proton transfer by the cytochrome b(6) f complex on the lumen side of the chloroplast thylakoid membrane are mediated by high and low potential electron transport chains. The rate constant for reduction, k(bred), of cytochrome b(6) in the low potential chain at ambient pH 7.5-8 was twice that, k(fred), of cytochrome f in the high potential chain, as previously reported. k(bred) and k(fred) have a similar pH dependence in the presence of nigericin/nonactin, decreasing by factors of 2.5 and 4, respectively, from pH 8 to an ambient pH = 6, close to the lumen pH under conditions of steady-state photosynthesis. A substantial kinetic isotope effect, k(H2O)/k(D2O), was found over the pH range 6-8 for the reduction of cytochromes b(6) and f, and for the electrochromic band shift associated with charge transfer across the b(6)f complex, showing that isotope exchange affects the pK values linked to rate-limiting steps of proton transfer. The kinetic isotope effect, k(bred)(H2O)/k(bred) (D2O) approximately 3, for reduction of cytochrome b in the low potential chain was approximately constant from pH 6-8. However, the isotope effect for reduction of cytochrome f in the high potential chain undergoes a pH-dependent transition below pH 6.5 and increased 2-fold in the physiological region of the lumen pH, pH 5.7-6.3, where k(fred)(H2O)/k(fred)(D2O) approximately 4. It is proposed that a rate-limiting step for proton transfer in the high potential chain resides in the conserved, buried, and extended water chain of cytochrome f, which provides the exit port for transfer of the second proton derived from p-side quinol oxidation and a "dielectric well" for charge balance.  相似文献   

18.
The cytochrome b6f complex of spinach chloroplasts was prepared with minor modification according to the method of E. Hurt and G. Hauska (1981) Eur. J. Biochem. 117, 591-599) replacing, however, the final ultracentrifugation step by hydroxyapatite chromatography as suggested by M. F. Doyle and C.-A Yu (1985) Biochem. Biophys. Res. Commun. 131, 700-706). The purified complex was partially dissociated by treatment with 4 M urea or 0.1% sodium dodecyl sulfate (SDS) in the absence of reducing agents. A binary subcomplex consisting of cytochrome f and the Rieske iron-sulfur protein was observed under these conditions by three different methods: (a) hydroxyapatite chromatography; (b) extraction with an isopropanol/water/trifluoroacetic acid mixture; and (c) gel filtration in the presence of low SDS concentrations. The subcomplex dissociated into its components by treatment with mercaptoethanol. These results suggest a close interaction of the cytochrome f with the Rieske protein involving SH groups which under reducing conditions leads to complete dissociation of the subcomplex.  相似文献   

19.
A monomeric form of the isolated cytochrome b6f complex from spinach chloroplast membranes has been isolated after treatment of the dimeric complex with varying concentrations of Triton X-100. The two forms of the complex are similar as regards electron transfer components and subunit composition. In contrast to a previous report (Huang et al. (1994) Biochemistry 33: 4401–4409) both the monomer and dimer are enzymatically active. However, after incorporation of the respective complexes into phospholipid vesicles, only the dimeric form of the cytochrome complex shows uncoupler sensitive electron transport, an indication of coupling of electron transport to proton translocation. The absence of this activity with the monomeric form of the cytochrome complex may be related to an inhibition by added lipids.Abbreviations CCCP- carbonyl cyanide m-chlorophenylhydrazone - mega-9- nonanoyl-N-methylglucamide  相似文献   

20.
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibited dark re-reduction of cytochrome c2 and reduction of b-type cytochrome, both of which are closely associated with electron transfer involving a cytochrome b-c2 oxidoreductase, after a single-turnover flash excitation in the chromatophore membranes from a photosynthetic bacterium, Rhodopseudomonas sphaeroides. Rapid proton uptakes (HI+, HII+) and the formation of the membrane potential registered by carotenoid bandshift phase III were also inhibited by DCCD. The electron transfer was inhibited in the presence of either valinomycin or carbonylcyanide-m-chlorophenylhydrazone (CCCP). These results indicated that DCCD inhibited the electron transfer involving the cytochrome b-c2 oxidoreductase in the bacterium. The inhibition was irreversible. A hydrophilic carbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDAC), did not affect the above-mentioned reactions. Thus, DCCD may interact with the hydrophobic region(s) in the chromatophore membranes from photosynthetic bacteria resulting in the inhibition(s) of the photosynthetic cyclic electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号