首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For a number of years, coenzyme Q (CoQ10 in humans) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in plasma, and extensively investigated its antioxidant role. These two functions constitute the basis on which research supporting the clinical use of CoQ10 is founded. Also at the inner mitochondrial membrane level, coenzyme Q is recognized as an obligatory co-factor for the function of uncoupling proteins and a modulator of the transition pore. Furthermore, recent data reveal that CoQ10 affects expression of genes involved in human cell signalling, metabolism, and transport and some of the effects of exogenously administered CoQ10 may be due to this property. Coenzyme Q is the only lipid soluble antioxidant synthesized endogenously. In its reduced form, CoQH2, ubiquinol, inhibits protein and DNA oxidation but it is the effect on lipid peroxidation that has been most deeply studied. Ubiquinol inhibits the peroxidation of cell membrane lipids and also that of lipoprotein lipids present in the circulation. Dietary supplementation with CoQ10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoproteins to the initiation of lipid peroxidation. Moreover, CoQ10 has a direct anti-atherogenic effect, which has been demonstrated in apolipoprotein E-deficient mice fed with a high-fat diet. In this model, supplementation with CoQ10 at pharmacological doses was capable of decreasing the absolute concentration of lipid hydroperoxides in atherosclerotic lesions and of minimizing the size of atherosclerotic lesions in the whole aorta. Whether these protective effects are only due to the antioxidant properties of coenzyme Q remains to be established; recent data point out that CoQ10 could have a direct effect on endothelial function. In patients with stable moderate CHF, oral CoQ10 supplementation was shown to ameliorate cardiac contractility and endothelial dysfunction. Recent data from our laboratory showed a strong correlation between endothelium bound extra cellular SOD (ecSOD) and flow-dependent endothelial-mediated dilation, a functional parameter commonly used as a biomarker of vascular function. The study also highlighted that supplementation with CoQ10 that significantly affects endothelium-bound ecSOD activity. Furthermore, we showed a significant correlation between increase in endothelial bound ecSOD activity and improvement in FMD after CoQ10 supplementation. The effect was more pronounced in patients with low basal values of ecSOD. Finally, we summarize the findings, also from our laboratory, on the implications of CoQ10 in seminal fluid integrity and sperm cell motility.  相似文献   

2.
Coenzyme Q10 (CoQ10) deficiency (MIM 607426) causes a mitochondrial syndrome with variability in the clinical presentations. Patients with CoQ10 deficiency show inconsistent responses to oral ubiquinone-10 supplementation, with the highest percentage of unsuccessful results in patients with neurological symptoms (encephalopathy, cerebellar ataxia or multisystemic disease). Failure in the ubiquinone-10 treatment may be the result of its poor absorption and bioavailability, which may be improved by using different pharmacological formulations. In a mouse model (Coq9X/X) of mitochondrial encephalopathy due to CoQ deficiency, we have evaluated oral supplementation with water-soluble formulations of reduced (ubiquinol-10) and oxidized (ubiquinone-10) forms of CoQ10. Our results show that CoQ10 was increased in all tissues after supplementation with ubiquinone-10 or ubiquinol-10, with the tissue levels of CoQ10 with ubiquinol-10 being higher than with ubiquinone-10. Moreover, only ubiquinol-10 was able to increase the levels of CoQ10 in mitochondria from cerebrum of Coq9X/X mice. Consequently, ubiquinol-10 was more efficient than ubiquinone-10 in increasing the animal body weight and CoQ-dependent respiratory chain complex activities, and reducing the vacuolization, astrogliosis and oxidative damage in diencephalon, septum–striatum and, to a lesser extent, in brainstem. These results suggest that water-soluble formulations of ubiquinol-10 may improve the efficacy of CoQ10 therapy in primary and secondary CoQ10 deficiencies, other mitochondrial diseases and neurodegenerative diseases.  相似文献   

3.
Of various metal ions (Ca2+, Cr3+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+ and Zn2+) added to the culture medium of Agrobacterium tumefaciens at 1 mM, only Ca2+ increased Coenzyme Q10 (CoQ10) content in cells without the inhibition of cell growth. In a pH-stat fed-batch culture, supplementation with 40 mM of CaCO3 increased the specific CoQ10 content and oxidative stress by 22.4 and 48%, respectively. Also, the effect of Ca2+ on the increase of CoQ10 content was successfully verified in a pilot-scale (300 L) fermentor. In this study, the increased oxidative stress in A. tumefaciens culture by the supplementation of Ca2+ is hypothesized to stimulate the increase of specific CoQ10 content in order to protect the membrane against lipid peroxidation. Our results improve the understanding of Ca2+ effect on CoQ10 biosynthesis in A. tumefaciens and should contribute to better industrial production of CoQ10 by biological processes.  相似文献   

4.
The purpose of these studies was to prepare and characterize nanoparticles into which Coenzyme Q10 (CoQ10) had been incorporated (CoQ10-NPs) using a simple and potentially scalable method. CoQ10-NPs were prepared by cooling warm microemulsion precursors composed of emulsifying wax, CoQ10, Brij 78, and/or Tween 20. The nanoparticles were lyophilized, and the stability of CoQ10-NPs in both lyophilized form and aqueous suspension was monitored over 7 days. The release of CoQ10 from the nanoparticles was investigated at 37°C. Finally, an in vitro study of the uptake of CoQ10-NPs by mouse macrophage, J774A.1, was completed. The incorporation efficiency of CoQ10 was approximately 74%±5%. Differential Scanning Calorimetry (DSC) showed that the nanoparticle was not a physical mixture of its individual components. The size of the nanoparticles increased over time if stored in aqueous suspension. However, enhanced stability was observed when the nanoparticles were stored at 4°C. Storage in lyophilized form demonstrated the highest stability. The in vitro release profile of CoQ10 from the nanoparticles showed an initial period of rapid release in the first 9 hours followed by a period of slower and extended release. The uptake of CoQ10-NPs by the J774A.1 cells was over 4-fold higher than that of the CoQ10-free nanoparticles (P<.05). In conclusion, CoQ10-NPs with potential application for oral CoQ10 delivery were engineered readily from microemulsion precursors.  相似文献   

5.
Quinones (e.g., coenzyme Q, CoQ10) are best known as carriers of electrons and protons during oxidative phosphorylation and photosynthesis. A myriad of mostly more indirect physical methods, including fluorescence spectroscopy, electron-spin resonance, and nuclear magnetic resonance, has been used to localize CoQ10 within lipid membranes. They have yielded equivocal and sometimes contradictory results. Seeking unambiguous evidence for the localization of ubiquinone within lipid bilayers, we have employed neutron diffraction. CoQ10 was incorporated into stacked bilayers of perdeuterated dimyristoyl phosphatidyl choline doped with dimyristoyl phosphatidyl serine containing perdeuterated chains in the natural fluid-crystalline state. Our data show CoQ10 at the center of the hydrophobic core parallel to the membrane plane and not, as might be expected, parallel to the lipid chains. This localization is of importance for its function as a redox shuttle between the respiratory complexes and, taken together with our recent result that squalane is in the bilayer center, may be interpreted to show that all natural polyisoprene chains lie in the bilayer center. Thus ubiquinone, in addition to its free radical scavenging and its well-known role in oxidative phosphorylation as a carrier of electrons and protons, might also act as an inhibitor of transmembrane proton leaks.  相似文献   

6.
This report describes the optimization of culture conditions for coenzyme Q10 (CoQ10) production by Agrobacterium tumefaciens KCCM 10413, an identified high-CoQ10-producing strain (Kim et al., Korean patent. 10-0458818, 2002b). Among the conditions tested, the pH and the dissolved oxygen (DO) levels were the key factors affecting CoQ10 production. When the pH and DO levels were controlled at 7.0 and 0–10%, respectively, a dry cell weight (DCW) of 48.4 g l−1 and a CoQ10 production of 320 mg l−1 were obtained after 96 h of batch culture, corresponding to a specific CoQ10 content of 6.61 mg g-DCW−1. In a fed-batch culture of sucrose, the DCW, specific CoQ10 content, and CoQ10 production increased to 53.6 g l−1, 8.54 mg g-DCW−1, and 458 mg l−1, respectively. CoQ10 production was scaled up from a laboratory scale (5-l fermentor) to a pilot scale (300 l) and a plant scale (5,000 l) using the impeller tip velocity (V tip) as a scale-up parameter. CoQ10 production at the laboratory scale was similar to those at the pilot and plant scales. This is the first report of pilot- and plant-scale productions of CoQ10 in A. tumefaciens.  相似文献   

7.
A higher Coenzyme Q10 (CoQ10) concentration of 25.04 mg/l was found in airlift bioreactor than the value of 18.11 mg/l obtained in stirred tank under the aerobic-dark cultivation of Rhodobacter sphaeroides. Aeration rate didn’t show obvious impact to CoQ10 production in airlift bioreactor. The fed-batch operation in airlift bioreactor could increase the biomass concentration and led to the maximum CoQ10 concentration of 33.91 mg/l measured, but a lower CoQ10 cell content (3.5 mg CoQ10/DCW) was observed in the fed-batch operation as compared to the batch operation. To enhance the CoQ10 content, an aeration-change strategy was proposed in the fed-batch operation of airlift bioreactor. This strategy led to the maximum CoQ10 concentration of 45.65 mg/l, a 35% increase as compared to the simple fed-batch operation. The results of this study suggested that a fed-batch operation in airlift bioreactor accompanying aeration-change could be suitable for CoQ10 production.  相似文献   

8.
At the 2017 meeting of the Australian Society for Biophysics, we presented the combined results from two recent studies showing how hydronium ions (H3O+) modulate the structure and ion permeability of phospholipid bilayers. In the first study, the impact of H3O+ on lipid packing had been identified using tethered bilayer lipid membranes in conjunction with electrical impedance spectroscopy and neutron reflectometry. The increased presence of H3O+ (i.e. lower pH) led to a significant reduction in membrane conductivity and increased membrane thickness. A first-order explanation for the effect was assigned to alterations in the steric packing of the membrane lipids. Changes in packing were described by a critical packing parameter (CPP) related to the interfacial area and volume and shape of the membrane lipids. We proposed that increasing the concentraton of H3O+ resulted in stronger hydrogen bonding between the phosphate oxygens at the water–lipid interface leading to a reduced area per lipid and slightly increased membrane thickness. At the meeting, a molecular model for these pH effects based on the result of our second study was presented. Multiple μs-long, unrestrained molecular dynamic (MD) simulations of a phosphatidylcholine lipid bilayer were carried out and showed a concentration dependent reduction in the area per lipid and an increase in bilayer thickness, in agreement with experimental data. Further, H3O+ preferentially accumulated at the water–lipid interface, suggesting the localised pH at the membrane surface is much lower than the bulk bathing solution. Another significant finding was that the hydrogen bonds formed by H3O+ ions with lipid headgroup oxygens are, on average, shorter in length and longer-lived than the ones formed in bulk water. In addition, the H3O+ ions resided for longer periods in association with the carbonyl oxygens than with either phosphate oxygen in lipids. In summary, the MD simulations support a model where the hydrogen bonding capacity of H3O+ for carbonyl and phosphate oxygens is the origin of the pH-induced changes in lipid packing in phospholipid membranes. These molecular-level studies are an important step towards a better understanding of the effect of pH on biological membranes.  相似文献   

9.
Recently, there has been a growing demand for therapeutic monoclonal antibodies (MAbs) on the global market. Because therapeutic MAbs are more expensive than low-molecular-weight drugs, there have been strong demands to lower their production costs. Therefore, efficient methods to minimize the cost of goods are currently active areas of research. We have screened several enhancers of specific MAb production rate (SPR) using a YB2/0 cell line and found that coenzyme-Q10 (CoQ10) is a promising enhancer candidate. CoQ10 is well known as a strong antioxidant in the respiratory chain and is used for healthcare and other applications. Because CoQ10 is negligibly water soluble, most studies are limited by low concentrations. We added CoQ10 to a culture medium as dispersed nanoparticles at several concentrations (Q-Media) and conducted a fed-batch culture. Although the Q-Media had no effect on cumulative viable cell density, it enhanced SPR by 29%. In addition, the Q-Media had no effect on the binding or cytotoxic activity of MAbs. Q-Media also enhanced SPR with CHO and NS0 cell lines by 30%. These observations suggest that CoQ10 serves as a powerful aid in the production of MAbs by enhancing SPR without changing the characteristics of cell growth, or adversely affecting the quality or biological activity of MAbs.  相似文献   

10.
In a water-organic solvent, two-phase conversion system, CoQ10 could be produced directly from solanesol and para-hydroxybenzoic acid (PHB) by free cells of Sphingomonas sp. ZUTE03 and CoQ10 concentration in the organic solvent phase was significantly higher than that in the cell. CoQ10 yield reached a maximal value of 60.8 mg l−1 in the organic phase and 40.6 mg g−1-DCW after 8 h. CoQ10 also could be produced by gel-entrapped cells in the two-phase conversion system. Soybean oil and hexane were found to be key substances for CoQ10 production by gel-entrapped cells of Sphingomonas sp. ZUTE03. Soybean oil might improve the release of CoQ10 from the gel-entrapped cells while hexane was the suitable solvent to extract CoQ10 from the mixed phase of aqueous and organic. The gel-entrapped cells could be re-used to produce CoQ10 by a repeated-batch culture. After 15 repeats, the yield of CoQ10 kept at a high level of more than 40 mg l−1. After 8 h conversion under optimized precursor’s concentration, CoQ10 yield of gel-trapped cells reached 52.2 mg l−1 with a molar conversion rate of 91% and 89.6% (on PHB and solanesol, respectively). This is the first report on enhanced production of CoQ10 in a two-phase conversion system by gel-entrapped cells of Sphingomonas sp. ZUTE03.  相似文献   

11.
Plasma membranes isolated from K562 cells contain an NADH-ascorbate free radical reductase activity and intact cells show the capacity to reduce the rate of chemical oxidation of ascorbate leading to its stabilization at the extracellular space. Both activities are stimulated by CoQ10 and inhibited by capsaicin and dicumarol. A 34-kDa protein (p34) isolated from pig liver plasma membrane, displaying NADH-CoQ10 reductase activity and its internal sequence being identical to cytochrome b 5 reductase, increases the NADH-ascorbate free radical reductase activity of K562 cells plasma membranes. Also, the incorporation of this protein into K562 cells by p34-reconstituted liposomes also increased the stabilization of ascorbate by these cells. TPA-induced differentiation of K562 cells increases ascorbate stabilization by whole cells and both NADH-ascorbate free radical reductase and CoQ10 content in isolated plasma membranes. We show here the role of CoQ10 and its NADH-dependent reductase in both plasma membrane NADH-ascorbate free radical reductase and ascorbate stabilization by K562 cells. These data support the idea that besides intracellular cytochrome b 5-dependent ascorbate regeneration, the extracellular stabilization of ascorbate is mediated by CoQ10 and its NADH-dependent reductase.  相似文献   

12.
Summary.  Wistar rats were fed with different diets with or without supplement coenzyme Q10 (CoQ10) and with oil of different sources (sunflower or virgin olive oil) for six or twelve months. Ubiquinone contents (CoQ9 and CoQ10) were quantified in homogenates of livers and brains from rats fed with the four diets. In the brain, younger rats showed a 3-fold higher amount of ubiquinone than older ones for all diets. In the liver, however, CoQ10 supplementation increased the amount of CoQ9 and CoQ10 in both total homogenates and plasma membranes. Rats fed with sunflower oil as fat source showed higher amounts of ubiquinone content than those fed with olive oil, in total liver homogenates, but the total ubiquinone content in plasma membranes was similar with both fat sources. Older rats showed a higher amount of ubiquinone after diets supplemented with CoQ10. Two ubiquinone-dependent antioxidant enzyme activities were measured. NADH-ferricyanide reductase activity in hepatocyte plasma membranes was unaltered by ubiquinone accumulation, but this activity increased slightly with age. Both cytosolic and membrane-bound dicumarol-sensitive NAD(P)H:(quinone acceptor) oxidoreductase (DT-diaphorase, EC 1.6.99.2) activities were decreased by diets supplemented with CoQ10. Animals fed with olive oil presented lower DT-diaphorase activity than those fed with sunflower oil, suggesting that the CoQ10 antioxidant protection is strengthened by olive oil as fat source. Received May 22, 2002; accepted September 20, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba Edificio Severo Ochoa, Campus de Rabanales, 14071 Córdoba, Spain.  相似文献   

13.
Oxidative stress leads to mitochondrial dysfunction, which triggers the opening of the permeability transition pores (PTP) and the release of pro-apoptotic factors causing apoptotic cell death. In a limited number of cell systems, anti-oxidants and free-radical scavengers have been shown to block this response. We have previously reported that coenzyme Q10 (CoQ10), an electron carrier in the mitochondrial respiratory chain, is involved in the reactive oxygen species (ROS) removal and prevention of oxidative stress-induced apoptosis in neuronal cells. However, the mechanism of this protection has not been fully elucidated. In the present study we investigated the effects of CoQ10 on the mitochondrial events characteristic to apoptosis, especially on the function of pro-apoptotic protein Bax. Our results demonstrated that following a brief exposure of two human cell lines (fibroblasts and HEK293 cells) to H2O2 the intracellular levels of ROS and the association of Bax with the mitochondria significantly increased and the cells underwent apoptosis. Both of these events, as well as the release of cytochrome c from the mitochondria, were blocked by a 24 h pre-treatment with CoQ10. It is therefore believed that CoQ10 prevented the collapse of the mitochondrial membrane potential in response to the H2O2 treatment. Recombinant Bax protein alone caused the ROS generation and release of cytochrome c from isolated mitochondria and, again, CoQ10 inhibited these Bax-induced mitochondrial dysfunctions.  相似文献   

14.
In an attempt to provide further confirmation of the antioxidant role of reduced form of coenzyme Q homologue (CoQnH2) and α-tocopherol (α-Toc), we incubated isolated rat hepatocytes with a water-soluble radical initiator, 2,2′-azobis(2-amidinopropane)dihydrochloride (AAPH) in the presence or absence of exogenously added coenzyme Q10 (CoQ10) or α-Toc for 3 h at 37°C under an atmosphere of 95% oxygen and 5% carbon dioxide. In the control experiment without adding AAPH it was confirmed that added CoQ10 and α-Toc were incorporated into the cells and some CoQ10 were converted to CoQ10H2. Incubation of hepatocytes with 50 mM AAPH resulted in the formation of thiobarbituric acid-reactive substances and the decrease in cell viability and both were inhibited by exogenously added CoQ10 or α-Toc in a dose-dependent manner. The decrease in endogenous CoQ9H2 and α-Toc levels was observed by the addition of AAPH. Addition of CoQ10 inhibited the oxidation of CoQ9H2 to CoQ9 dose-dependently while the addition of α-Toc did not. These data suggest that both CoQnH2 and α-Toc act as antioxidants and can inhibit free radical-mediated cell injury.  相似文献   

15.
(1) The serotonin1A receptor is a G-protein coupled receptor involved in several cognitive, behavioral, and developmental functions. It binds the neurotransmitter serotonin and signals across the membrane through its interactions with heterotrimeric G-proteins. (2) Lipid–protein interactions in membranes play an important role in the assembly, stability, and function of membrane proteins. The role of membrane environment in serotonin1A receptor function is beginning to be addressed by exploring the consequences of lipid manipulations on the ligand binding and G-protein coupling of serotonin1A receptors, the ability to functionally solubilize the serotonin1A receptor, and the factors influencing the membrane organization of the serotonin1A receptor. (3) Recent developments involving the application of detergent-based and detergent-free approaches to understand the membrane organization of the serotonin1A receptor under conditions of ligand activation and modulation of membrane lipid content, with an emphasis on membrane cholesterol, are described.  相似文献   

16.
The production yield of Coenzyme Q10 (CoQ10) from the sucrose consumed by Agrobacterium tumefaciens KCCM 10413 decreased, and high levels of exopolysaccharide (EPS) accumulated after switching from batch culture to fed-batch culture. Therefore, we examined the effect of sucrose concentration on the fermentation profile by A. tumefaciens. In the continuous fed-batch culture with the sucrose concentration maintained constantly at 10, 20, 30, and 40 g l−1, the dry cell weight (DCW), specific CoQ10 content, CoQ10 production, and the production yield of CoQ10 from the sucrose consumed increased, whereas EPS production decreased as maintained sucrose concentration decreased. The pH-stat fed-batch culture system was adapted for CoQ10 production to minimize the concentration of the carbon source and osmotic stress from sucrose. Using the pH-stat fed-batch culture system, the DCW, specific CoQ10 content, CoQ10 production, and the product yield of CoQ10 from the sucrose consumed increased by 22.6, 13.7, 39.3, and 39.3%, respectively, whereas EPS production decreased by 30.7% compared to those of fed-batch culture in the previous report (Ha SJ, Kim SY, Seo JH, Oh DK, Lee JK, Appl Microbiol Biotechnol, 74:974–980, 2007). The pH-stat fed-batch culture system was scaled up to a pilot scale (300 l), and the CoQ10 production results obtained (626.5 mg l−1 of CoQ10 and 9.25 mg g DCW−1 of specific CoQ10 content) were similar to those obtained at the laboratory scale. Thus, an efficient and highly competitive process for microbial CoQ10 production is available.  相似文献   

17.
Controlled cell death is fundamental to tissue hemostasis and apoptosis malfunctions can lead to a wide range of diseases. Bcl-xL is an anti-apoptotic protein the function of which is linked to its reversible interaction with mitochondrial outer membranes. Its interfacial and intermittent bilayer association makes prediction of its bound structure difficult without using methods able to extract data from dynamic systems. Here we investigate Bcl-xL associated with oriented lipid bilayers at physiological pH using solid-state NMR spectroscopy. The data are consistent with a C-terminal transmembrane anchoring sequence and an average alignment of the remaining helices, i.e. including helices 5 and 6, approximately parallel to the membrane surface. Data from several biophysical approaches confirm that after removal of the C-terminus from Bcl-xL its membrane interactions are weak. In the presence of membranes Bcl-xL can still interact with a Bak BH3 domain peptide suggesting a model where the hydrophobic C-terminus of the protein unfolds and inserts into the membrane. During this conformational change the Bcl-xL hydrophobic binding pocket becomes accessible for protein–protein interactions whilst the structure of the N-terminal region remains intact. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Ubiquinone (coenzyme Q10 or CoQ10) is a lipid-soluble component of virtually all cell membranes and has multiple metabolic functions. Deficiency of CoQ10 (MIM 607426) has been associated with five different clinical presentations that suggest genetic heterogeneity, which may be related to the multiple steps in CoQ10 biosynthesis. Patients with all forms of CoQ10 deficiency have shown clinical improvements after initiating oral CoQ10 supplementation. Thus, early diagnosis is of critical importance in the management of these patients. This year, the first molecular defect causing the infantile form of primary human CoQ10 deficiency has been reported. The availability of genetic testing will allow for a better understanding of the pathogenesis of this disease and early initiation of therapy (even presymptomatically in siblings of patients) in this otherwise life-threatening infantile encephalomyopathy. Special issue dedicated to John P. Blass.  相似文献   

19.
Perturbations induced by a toxic lectin (ricin) on lipid organisation of model membranes prepared with DPPC and DPPC-cerebrosides mixtures have been analysed by Raman and infrared spectroscopy, two powerful and non-invasive methods. Our approach involves the observation of changes in the vibrational spectra of liquid multilayers in the PO 2 - , C=0 and CH2 spectral regions for two lipid: ricin molar ratios (225:1, 75:1).The interfacial and polar regions of the multilayers, analysed by FTIR, appear to be perturbed by the protein. With both kinds of membranes, ricin mainly perturbs the C=0 ester groups of the sn-2 acylchain of DPPC. In the PO 2 - stretching region, the frequency shifts are correlated with changes in polar group hydration.In the hydrophobic core of the multilayer membrane studied by Raman spectroscopy, the interaction of ricin is associated with changes in lipid packing. These perturbations depend upon the lipid composition of the membrane. With DPPC membranes, an affect is detected at temperatures lower than T m .It corresponds to a decrease of the lipid ordering. With DPPC-cer membranes, the protein increases the acylchain packing order regardless of the temperature of the experiments (10°C<T<75°C). No perturbation of T m is observed after addition of ricin to either DPPC or DPPC-cer membranes.The different perturbations detected by Raman and FTIR suggest that ricin mainly interacts with the interfacial domains of the membranes.  相似文献   

20.
Potassium channels play important physiological roles in human syncytiotrophoblasts (hSTBs) from placenta, an epithelium responsible for maternal–fetal exchange. Basal and apical plasma membranes differ in their lipid and protein composition, and the latter contains cholesterol-enriched microdomains. In placental tissue, the specific localization of potassium channels is unknown. Previously, we described two isolated subdomains from the apical membrane (MVM and LMVM) and their respective microdomains (lipid rafts). Here, we report on the distribution of Kir2.1, Kv2.1, TASK-1, and TREK-1 in hSTB membranes and the lipid rafts that segregate them. Immunoblotting experiments showed that these channels are present mainly in the apical membrane from healthy hSTBs. Apical expression versus basal membrane was 84 and 16% for Kir2.1 and Kv2.1, 60 and 30% for TREK-1, and 74 and 26% for TASK-1. Interestingly, Kv2.1 showed differences between apical membrane subdomains: 26 ± 8% was located in the LMVM and 59 ± 9% in MVM. In pathological placentas, the expression distribution changed in the basal membrane: preeclampsia shifted to 50% and intrauterine growth restriction to 42% for TASK-1 and both pathologies increased to 25% for Kir2.1 and Kv2.1, Kir2.1 appeared to be associated with rafts that were sensitive to cholesterol depletion in healthy, but not in pathological, placentas. Kv2.1 and TREK-1 emerged in the nonraft fractions. The precise membrane localization of ion channels in hSTB membranes is necessary to understand the physiological events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号