首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu  Huizhe  Sun  Song  Wu  Lin  Bai  Ping 《Plasmonics (Norwell, Mass.)》2014,9(4):845-850

In this paper, the optical near-field enhancement of graphene bowtie antennas is numerically investigated at terahertz frequencies using boundary element method. The enhanced field intensity at the gap region is a result of the mutual coupling between two triangular elements upon the excitation of graphene plasmons. Firstly, wide plasmon frequency tunability is demonstrated by changing the chemical potential of graphene without the need to alter the antenna geometry. Secondly, by varying the tip angle and radius of curvature of the graphene antennas, the field intensity enhancement at the gap center of the two-element antennas is systematically studied. It is found that graphene bowtie antennas with two round-cornered equilateral triangles have superior performance to other two-element antennas, such as ribbon pair, sharp-cornered bowtie, and disk pair antennas. Last but not least, by applying a moderate chemical potential of 0.4 eV to graphene bowtie antennas, we found that the field intensity enhancement at gap center is about 220 times as much as using gold of comparable sizes. In short, graphene bowtie antennas of rounded corners give rise to considerable near-field enhancement and are promising for a wide range of applications such as molecular sensing at terahertz frequencies.

  相似文献   

2.
We propose a new design of a plasmonic nanoantenna and numerically study its optical properties by means of the 3D finite element method. The nanoantenna is composed of two identical castle-like contour nanometal-filled dielectric media inside the hollows. We examine the influence of the contour thickness, gap width, and dielectric media filled inside the hollows on the antenna resonance conditions. Through these simulations, we show that it is possible to tune an antenna with a constant length over a broad spectral range (ranging in ultraviolet–visible, visible light, and infrared light).  相似文献   

3.
The surface plasmon polariton (SPP) coupling and enhancement in silver nanowire–nanoantenna structure is proposed and simulated by using finite difference time domain method. The results demonstrate that three-arm antenna can effectively enhance the coupling efficiency at the incident end and the SPP field intensity at the emission end. The enhancement factor, which is defined as the ratio of the SPP field intensity at the emission end with and without the three-arm antenna, for the various antenna arm lengths and incident wavelengths under different incident angles are calculated. The suggested structure can be served as an enhanced plasmonic waveguide for the nanophotonic and plasmonic circuits in the future.  相似文献   

4.
The interaction between the two perpendicular Fabry–Perot-like resonances of the antenna–dielectric–slit structure and their influences on the transmission enhancement are investigated with a finite-difference time-domain method. The transmission enhancement is found with the antenna width corresponding to a Fabry–Perot-like resonance condition in the antenna–dielectric–slit structure; otherwise, there is no such an enhancement even when the slit is positioned under the magnetic field maximum. On the other hand, the resonance characteristics of the vertical slit can also modify the field distribution in the horizontal cavity by changing the phase difference at the two antenna ends. It is shown that the enhanced transmission can be realized in a wide range of incident wavelengths from the visible to near-infrared regime for different slit geometries. The physical mechanism of extraordinary optical transmission is discussed with a theoretical dispersion relationship of surface plasmon polaritons based on a metal–insulator–metal cavity model.  相似文献   

5.
We present the strength modulation and frequency tuning of Fano resonance by employing a graphene nanodimer formed by two coplanar perpendicular nanostrips with different dimensions. The Fano resonance is induced by destructive interference between the bright dipole mode of a short nanostrip and the dark quadrupole mode of a long nanostrip. The strength, line width, and resonance frequency of the Fano resonance can be actively modulated by changing the spatial separation of those two graphene nanostrips and the Fermi energy of the graphene nanodimer, respectively, without re-fabricating the nanostructures. The tuning of the strength and resonance frequency can be attributed to the coupling strength and optical properties of graphene, respectively. Importantly, a figure of merit value as high as 39 is achieved in the proposed nanostructures. Our results may provide potential applications in optical switching and bio-chemical sensing.  相似文献   

6.
In this paper, systematic study for asymmetric tapered dipole nanoantenna is implemented using finite element frequency domain (FEFD) solver where harvesting efficiency, field confinement, surface current, and input impedance are calculated at wavelength of 500 nm. The proposed nanoantennas achieve a harvesting efficiency of 61.3% and a field enhancement factor of 37.7 over the conventional dipole nanoantenna. This enhancement is attributed to the irregularity of the surface current distribution on the asymmetric designs. Particle swarm optimization technique is used to find the optimum design geometrical parameters through an external link between the optimization algorithm and the FEFD solver. Moreover, the proposed designs offer a resonance impedance of 500 Ω to match that of fabricated rectifiers. Further study of the structure fabrication tolerance is included which shows the robustness of the proposed nanoantennas.  相似文献   

7.
The ability to precisely tailor lineshapes, operational bandwidth, and localized electromagnetic field enhancements (“hot spots”) in nanostructures is currently of interest in advancing the performance of plasmonics-based chemical and biological sensing techniques. Fractal geometries are an intriguing alternative in the design of plasmonic nanostructures as they offer tunable multiband response spanning the visible and infrared spectral regions. A numerical study of the optical behavior of ternary tree fractal plasmonic nanoantenna is presented. Self-similar features are seen to emerge in the extinction spectra with the increase in fractal order N of the tree structure. Plasmon oscillations occurring at different length scales are shown to correspond to the multiple peaks and are compared with the spatial maps of electric field enhancement at the surface of the nanoantenna. The multiple peaks are shown to be independently tunable by structural variation. The robustness of the spectral response and polarization dependence arising due to various asymmetries is discussed.  相似文献   

8.
Resonant optical dipole nano-antennas allow giant field enhancement within nano-gaps. To show how the energy of external illumination waves is delivered and concentrated in nano-gaps, we build up a model by considering the dynamical launching and multiple scattering processes of surface plasmon polaritions (SPPs) on both antenna arms. The model captures the main feature of the antenna resonance as evidenced by comparison of the model prediction with fully vectorial numerical results and provides an intuitive picture that the energy of external wave is initially transferred into SPP and is then coupled into the nano-gap. The enhanced field in the nano-gap oscillates quasi-periodically with the increase of the antenna-arm length, and the resonance peaks can be predicted with a phase-matching condition derived from the model, showing that antenna resonance is due to a constructive interference of the multiple-scattered SPPs. Analytical equation for determining the complex resonance wavelength and the quality factor of the resonant modes is obtained. The model however exhibits observable deviation from fully vectorial numerical results for the lowest resonance order (for antenna with the shortest arms), evidencing that, for this case, surface waves other than SPPs contribute to the antenna resonance. The present results are helpful for clarifying the underlying physics for the energy concentration with resonant dipole antennas and may provide recipes for intuitive design of antenna devices, such as those used for optical nonlinearity enhancement and biochemical sensing.  相似文献   

9.
Tunable local surface plasmon resonance (LSPR) enhancement properties of scaffold-based multi-nanoparitcle clusters were investigated using finite-difference time-domain (FDTD) method with calculated optical spectra, near-field distribution, and average enhancement of hybrid nanostructures as slab/nanoparticls, cylinder/nanoparticles, and sphere/nanoparticles. Focusing on influence factors including surface curvature, coupling effect, and decorated particle number, several models were built for further understanding on the dominate contribution in complicate multi-particle nanostructure and to explore their potential for plasmonic enhancement applications such as surface-enhanced Raman spectroscopy (SERS), solar cells material, LSPR sensor, and nanoantenna.  相似文献   

10.
Liu  Yuanyuan  Li  Kangkang  Cao  Sainan  Xiong  Guang  Zhu  Lu 《Plasmonics (Norwell, Mass.)》2019,14(6):1577-1586

A new genetic algorithm (GA)-based multi-slot nanoantenna is proposed for energy harvesting, which consists of two element nanoantennas with rectangular shape and with double bowtie double ring (DBDR) slot. The DBDR slot structure can enhance the electric field to increase the absorptivity of nanoantennas; however, the larger parameter space of multi-slot is more hardly controlled. Therefore, we use GA to optimize the parameters of the DBDR slot nanoantenna and the Finite-Difference Time-Domain method to calculate the absorptivity. It is found that absorptivity of the optimized nanoantenna is over 77% in 400–1800 nm waveband. We attribute the better absorbing property of the nanoantenna to the synergistic effect of the localized surface plasmon resonance enhancement and coupling between slots.

  相似文献   

11.
Wan  Yuan  Tan  Yuanxin  Yang  Yang  Chong  Haining  Meng  Zhaozhong  Wang  Jing 《Plasmonics (Norwell, Mass.)》2022,17(2):843-849

Actively tunable Fano resonance has obvious advantages in applications such as chemical or biological sensors, switches, modulators, and optical filters. In this paper, we studied theoretically the actively tunable Fano resonance in H-like metal-graphene hybrid nanostructures at visible and near-infrared wavelengths. We found that the absorption spectrum of H-like metal-graphene hybrid nanostructures has two resonance peaks, and the absorption spectrum has an obvious blue shift compared with that of the H-like metal nanostructures without graphene. The optical properties of different nanostructures are explained by the electric field distribution. Then, the dependence of the Fano resonance on the nanostructure parameters, refractive index of host materials, and graphene Fermi energy is studied. The wavelength and intensity of absorption spectrum can be manipulated by adjusting the structure parameters and host materials. In addition, the wavelength and intensity of absorption spectrum can be manipulated actively by changing the Fermi energy levels of graphene. This study provides a method for designing the actively tunable Fano resonance in H-like metal-graphene hybrid nanostructures.

  相似文献   

12.
In this paper, a novel doubly resonant three-dimensional (3D) nanodisk Yagi–Uda antenna, conceived for realizing wireless optical links within electronic circuits, is proposed. The prominent emitting properties of this nanoantenna have been deeply investigated both in the near and far field through a useful comparison with a more traditional 3D nanorod Yagi–Uda antenna. The behavior of the nanodisk antenna, both configured as a single nanoantenna and arranged in planar arrays, have been illustrated, emphasizing its improved performances with relation to crucial aspects as directional features, wavelength bands of operation, frequency tuning, and polarization influence on radiation. In particular, the single nanodisk antenna has been accurately designed to enhance the transmission feature in the near field at the wavelengths λ?=?1.3 and λ?=?1.55 μm. Also, the emission pattern of the array of nanodisk antennas has been properly tailored to ensure high peaks of directivity and narrow beam width in those ranges. Hence, efficient unidirectional angle patterns have been shaped for any operation wavelength and dimensions of the array, reaching extremely effective outcomes for a 3?×?3 array, which exhibits a maximum of directivity of 19 and 17.6 and ?3 dB points at 18° and 21° for λ?=?1.3 and λ?=?1.55 μm, respectively.  相似文献   

13.
We demonstrate significantly longer plasmon lifetime and stronger electric field enhancement by lifting the nanoantenna arrays above the substrate by dielectric nanopillars. The role of the pillar is to offer a more homogeneous dielectric background allowing stronger diffraction coupling among plasmonic nanoantennas leading to a Fanolike asymmetric lineshape. It is found that the electric fields around the nanoantennas can be greatly enhanced when the Fanolike resonance is excited, and a 4.2 times enhancement is achieved compared with the pure resonance in individual nanoantennas. Furthermore, only a collective surface mode with its electric fields of the same direction as the induced electric moment in the nanoantennas could mediate the excitation of such a Fanolike resonance. More importantly, the sensitivity and the figure of merit (FOM) of this plasmonic structure can reach as high as 900 nm/RIU and 53, respectively. Our study offers a new, simple, and efficient way to design the plasmonic systems with desired electric field enhancement and spectral lineshape for different applications.  相似文献   

14.
We numerically study the extraordinary optical transmission of a plasmonic structure that combines a circular nanoantenna and a vertical annular nanoslit etched into a gold film under radially polarized illumination. The nanoantenna collects the incident field and localizes it in a horizontal Fabry-Pérot cavity over the gold film. The vertical nanoslit positioned at the maximal field in the horizontal cavity couples the localized field and facilitates its transmission to the free space. Due to the symmetry matching between the structure and the illumination polarization, surface plasmons can be excited effectively and enhance the transmission. Through optimizing the structure parameters, the transmission efficiency can be greatly enhanced by 225 times for a resonant annular nanoslit and 251 times for a non-resonant annular nanoslit. This axisymmetric extraordinary optical transmission setup may be fabricated on the facet of an optical fiber for optical sensing applications.  相似文献   

15.
We show that DNA carrying 5-methylcytosine modifications or methylated DNA (m-DNA) can be distinguished from DNA with unmodified cytosine by Raman spectroscopy enhanced by both a bowtie nanoantenna and excitation resonance. In particular, m-DNA can be identified by a peak near 1000 cm?1 and changes in the Raman peaks in the 1200–1700 cm?1 band that are enhanced by the ring-absorption resonance. The identification is robust to the use of resonance Raman and nanoantenna excitation used to obtain significant signal improvement. The primary differences are three additional Raman peaks with methylation at 1014, 1239, and 1639 cm?1 and spectral intensity inversion at 1324 (C5=C6) and 1473 cm?1 (C4=N3) in m-DNA compared to that of DNA with unmodified cytosine. We attribute this to the proximity of the methyl group to the antenna, which brings the (C5=C6) mode closer to experiencing a stronger near-field enhancement. We also show distinct Raman spectral features attributed to the transition of DNA from a hydrated state, when dissolved, to a dried/denatured state. We observe a general broadening of the larger lines and a transfer of spectral weight from the ~1470 cm?1 vibration to the two higher-energy lines of the dried m-DNA solution. We attribute the new spectral characteristics to DNA softening under high salt conditions and find that the m-DNA is still distinguishable via the ~1000 cm?1 peak and distribution of the signal in the 1200–1700 cm?1 band. The nanoantenna gain exceeds 20,000, whereas the real signal ratio is much less because of a low average enhanced region occupancy even with these relatively high DNA concentrations. It is improved when fixed DNA in a salt crystal lies near the nanoantenna. The Raman resonance gain profile is consistent with A-term expectations, and the resonance is found at ~259 nm excitation wavelength.  相似文献   

16.
Magnetic hot spots, which implies confinements and enhancements of magnetic fields, are demonstrated in graphene junctions (GJs) in the mid-infrared range. The appearance of magnetic hot spots in GJs comes from the conduction currents in the junction. In further, the extinction resonance peaks suffer blue shift, along with the increases in the magnetic fields inside junction area, when the junction width reduces. In opposite to the circumstances for electric field enhancements, neither magnetic field enhancements nor resonance frequency of GJs is perturbed by the intrinsic nonlocal electronic response of graphene. Such nonlocality immunized magnetic enhancement could be explained by the polarization dependent property of nonlocal effect.  相似文献   

17.
A graphene-based metamaterial with tunable electromagnetically induced transparency is numerically studied in this paper. The proposed structure consists of a graphene layer composed of H shape between two cut wires, by breaking symmetry can control EIT-like effects and by increasing the asymmetry in the structure has strong coupling between elements. It is important that the peak frequency of transmission window can be dynamically controlled over a broad frequency range by varying the chemical potential of graphene layer. The results show that high refractive index sensitivity and figure of merit can be achieved in asymmetrical structures which is good for sensing applications. We calculated the group delay and the results show we can control the group velocity by varying the S parameter in asymmetrical structure. The characteristics of our system indicate important potential applications in integrated optical circuits such as optical storage, ultrafast plasmonic switches, high performance filters, and slow-light devices.  相似文献   

18.
We investigate numerically the modification of the nonlinear optical properties of a nanoantenna in the trapping of nanoparticles (NPs) by using both the discrete dipole approximation method and the finite-difference time-domain technique. The nanoantenna, which is formed by two gold nanorods (GNRs) aligned end to end and separated by a small gap, can emit strong two-photon-induced luminescence (TPL) under the excitation of a femtosecond laser light which is resonant with its longitudinal surface plasmon resonance. In addition, the excited antenna can stably trap small NPs which in turn induce modifications in the emitted TPL. These two features make it a promising candidate for building highly sensitive detectors for NPs of different materials and sizes. It is demonstrated that sensors built with antennas possess higher sensitivities than those built with single GNRs and nanorod-based antennas are more sensitive than nanoprism-based antennas. In addition, it is found that the trapping probability for a second NP is significantly reduced for the antenna with a trapped NP, implying that trapping of NPs may occur sequentially. A relationship between the TPL of the system (antenna?+?NP) and the optical potential energy of the NP is established, enabling the extraction of the information on the optical potential energy and optical force by recording the TPL of the system. It is shown that the sequential trapping and releasing of NPs flowing in a microfluid channel can be realized by designing two different antennas arranged closely.  相似文献   

19.
Due to excellent electronic and optical properties as well as tunable work functions, graphene and graphene‐based materials are highly attractive for applications in enhancement of harvesting solar energy. In particular, they can be used as electron and hole transport materials, buffer layers, and window or/and counter electrodes in solar cells. This research news surveys very recent advances in this emerging field, with emphasis on fundamental understanding of their performance enhancement mechanisms for photovoltaic devices, and discusses future challenges.  相似文献   

20.
A theoretical study based on quasi-static approximation is performed to investigate the location-dependent local field enhancement around the dielectric shell-coated gold nanosphere. Our calculation results show that the local field distribution near a gold nanoparticle can be altered greatly by coating with a dielectric shell. Because of the polarizability of the dielectric shell, increasing azimuth angle along the inner surface leads to the increase of the local field, which is opposite to that of the outer surface. Furthermore, the location-dependent local field enhancement and resonance frequency at both the inner and outer surfaces can also be modulated by varying the shell thickness and shell dielectric constant. These calculation results about the location-dependent local field enhancement show the potential of dielectric-coated metallic nanostructure for single-molecule detection based on surface-enhanced Raman scattering and surface enhanced fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号