首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Au film and glycerin selectively infilling photonic crystal fibers are analyzed by the finite element method. One cladding air hole is coated with Au film and infiltrated with glycerin to form a defect core. The simulation results show that both of the defect core modes formed on the glycerin and Au film can inspire resonance with core modes. The maximum sensitivity can reach to 2.50 nm/ °C in x polarized direction and 2.00 nm/ °C in y polarized direction for the temperature sensor, respectively. Furthermore, we obtain that the confinement losses of the photonic crystal fibers (PCFs) can meet with 321.442 dB/cm and 445.958 dB/cm at a short wavelength band (1460 ~1530 nm) and an extended wavelengths band (1360 ~1460 nm) for x polarized direction and y polarized direction respectively, which can be applied in many polarization filter devices as well. The compatibility of temperature sensor and polarization filter based on an identical structure can be realized at different wavelengths.  相似文献   

2.
We design a single-polarization single-mode photonic crystal fiber filter based on surface plasmon resonance. The finite element method is employed to evaluate the characteristics of the filter. The proposed fiber is devised such that there is a great discrepant confinement loss between two polarizations of x and y by varying two air holes in the cladding region, which is composed of hexagonal structural air holes in pure silica selectively filling with gold wires. Numerical simulations show that single-polarization single-mode operation waveband can be tuned by adjusting the parameters of the photonic crystal fiber. The confinement losses of the unwanted polarization can reach to 126.10 and 326.30 dB/cm in the wavelengths of 1.31 and 1.55 μm, while the corresponding confinement losses of the wanted polarized mode are only 0.08 and 1.20 dB/cm, respectively. Furthermore, the crosstalk can come to a maximum of 120.34 and 310.41 dB in the two communication bands. The bandwidths of the fiber designed for 1.31 and 1.55 μm are, respectively, 20 and 60 nm, which may be found useful applications for fiber polarizer.  相似文献   

3.
Dou  Chao  Jing  Xili  Li  Shuguang  Liu  Qiang  Bian  Jing 《Plasmonics (Norwell, Mass.)》2016,11(4):1163-1168

A single-polarization photonic crystal fiber (PCF) based on surface plasmon resonance (SPR) is proposed. Finite element method is employed in simulating the PCF with gold-coated. The resonance wavelength can be modulated by changing the thickness of gold layer. At the resonance wavelength 1.55 μm, the loss of y-polarized mode is much larger than the loss of x-polarized mode. When the fiber length is set to 2 mm, the value of extinction ratio reaches to −118.7 dB, the y-polarized mode is suppressed and only x-polarized mode can be guided. The fiber is applicable in the production of single-polarization filter. The PCF has a simple structure and a big error tolerance, it has a good practicability.

  相似文献   

4.
Zhao  Xingtao  Hua  Lu  Jiang  Guohui  Cheng  Jirui  Xiong  Qiang 《Plasmonics (Norwell, Mass.)》2019,14(6):1725-1733

A polarization filter that has a novel photonic crystal fiber structure of semi-hourglass part and Au-coated film is proposed. We simulated the performance of the structure by the finite element method. The numerical simulation results show that altering the structure parameters and the thickness of Au film can lead to an optimal parameter combination with remarkable features, owing to the semi-hourglass part that induced huge asymmetry factor into the structure. On the one hand, when the thickness of Au film is controlled to be 18.7 nm, we can get the confinement loss 1304.02 dB/cm and 3.96 dB/cm on y-polarization and x-polarization respectively at λ = 1.55 μm. On the other hand, controlling the thickness to 35 nm, the confinement loss on y-polarization and x-polarization is 848.87 dB/cm and 1.31 dB/cm respectively at λ = 1.31 μm. In addition, the bandwidth with crosstalk smaller than − 20 dB is 680 nm and 800 nm at λ = 1.55 μm and 1.31 μm, respectively, when the fiber length is 500 μm. This structure, as a reference, can provide a new idea when designing a photonic crystal fiber structure applied in optical communication and sensor system.

  相似文献   

5.
We propose a modified design for a photonic crystal fiber (PCF) polarization filter based on surface plasmon resonance (SPR). The air holes are arrayed in diamond lattices, and the diameter of the holes around the gold-coated holes are different that can separate the refractive index of the x-polarization and y-polarization second order surface plasmon polariton (SPP) modes. The influences of structural parameters of the photonic crystal fiber (PCF) on the filter characteristics are studied using the finite element method (FEM). Great changes have taken place in the results of numerical simulation by changing the thickness of the gold film and air hole diameter. Simulation results show that the resonance wavelength is communication wavelength 1550 mm, the loss of the y-polarization mode is 43,126.7 dB/m. When the length of the fiber is 500 μm, extinction ratio is more than 20 dB at the communication wavelength, and bandwidth achieve to 190 nm. It is an important property of PCF polarization filter in production.  相似文献   

6.
Jiang  Linghong  Zheng  Yi  Yang  Jianju  Hou  Lantian  Li  Zuohan  Zhao  Xingtao 《Plasmonics (Norwell, Mass.)》2017,12(2):411-417
Plasmonics - An ultra-broadband single polarization filter based on plasmonic photonic crystal fiber with a liquid crystal core is investigated using the full-vectorial finite element method....  相似文献   

7.
A novel design of a polarization filter based on photonic crystal fiber (PCF) is proposed in this paper. With the introduction of a gold-coated air hole, the resonance strength is much stronger in y-polarized direction than in x-polarized direction at some particular wavelengths, which is due to the metal surface plasmon effects. At the wavelength of 1.31 μm, the loss of y-polarized mode is 2138.34 dB/cm while the loss is very low in x polarization. Furthermore, the loss peak can be flexibly adjusted from the wavelength of 1.26 to 1.56 μm by changing the thickness of a gold layer, and the loss in y polarization can be kept above 1200 dB/cm. The significant loss in y polarization makes this PCF a good candidate for developing a polarization filter with high performance.  相似文献   

8.
We design two kinds of plasmonic broadband polarization splitters based on dual-core photonic crystal fiber (DC-PCF) with elliptical Au or Ag nanowire in this paper. It is analyzed for the polarization independent characterestics of the designed DC-PCF by the finite element method (FEM). In order to excite the surface plasmon resonance (SPR), the metal Au and Ag are filled into elliptical central air hole. The resonance coupling between the fourth- or fifth-order surface plasmon modes (SPMs) and core-guided modes (CGMs) are founded by this numerical simulation. The device lengths of the designed splitters with Au nanowire are 2937 and 827 μm at the wavelength of 1.31 and 1.55 μm, respectively. As the extinction ratios are better than ?20 dB, its bandwidths are better than 94 and 103 nm. For the designed Ag nanowire splitter, the device lengths are 3066 or 809 μm at 1.31 or 1.55 μm, respectively. The bandwidths with the extinction ratio better than ?20 dB are 66 and 104 nm, respectively.  相似文献   

9.
Yang  Xianchao  Lu  Ying  Liu  Baolin  Yao  Jianquan 《Plasmonics (Norwell, Mass.)》2018,13(3):1035-1042

The polarization characteristics of high-birefringence photonic crystal fiber (HB-PCF) selectively coated with silver layers are numerically investigated using the full-vector finite element method (FEM). The fundamental mode coupling properties and polarization splitting effect are discussed in detail. Results show that the resonance wavelength, resonance strength, and splitting distance between two polarized modes can be adjusted significantly by changing the fiber structure, the diameter of silver rings, and the thickness of silver layers. A single-polarization filter at 1310 nm bands is proposed with the corresponding loss 500 dB/cm and full width half maximum (FWHM) only 23 nm. This work is very helpful for further studies in polarization-dependent wavelength-selective applications or other fiber-based plasmonic devices.

  相似文献   

10.
In this article, a D-shaped photonic crystal fiber based surface plasmon resonance sensor is proposed for refractive index sensing. Surface plasmon resonance effect between surface plasmon polariton modes and fiber core modes of the designed D-shaped photonic crystal fiber is used to measure the refractive index of the analyte. By using finite element method, the sensing properties of the proposed sensor are investigated, and a very high average sensitivity of 7700 nm/RIU with the resolution of 1.30 × 10?5 RIU is obtained for the analyte of different refractive indices varies from 1.43 to 1.46. In the proposed sensor, the analyte and coating of gold are placed on the plane surface of the photonic crystal fiber, hence there is no necessity of the filling of voids, thus it is gentle to apply and easy to use.  相似文献   

11.
We propose a modified design for a photonic crystal fiber (PCF) filter based on surface plasmon resonance(SPR). The air holes are arrayed in rectangular lattices, while the size and the pitches of holes around the gold-coated holes are different. That can separate the x-polarization and y-polarization of second-order surface plasmon polariton (SPP). The resonance strength of the surface plasmon mode and import of structural parameters of the PCF on the filter characteristics are studied through using the finite element method (FEM). Numerical simulations demonstrate that the thickness of the gold layer, the gold-coated or gold-filled, and the asymmetry around the gold-coated holes have a great effect on the filter characteristics. It is certain to obtain a resonance strength as high as 873 and 771.5 dB/cm at the communication wavelength of 1050 and 1310 nm in x-polarization by adjusting the size and the place of the gold-coated holes, while the loss is extremely low in y-polarization.  相似文献   

12.

This paper presents a highly birefringence (Hi-Bi) photonic crystal fiber (PCF)-based single-polarization filter, which consists of copper microwires. Copper is chemically stable and the use of microwires is benefit to fabricate than any metal-coated PCF. The filter characteristics are inspected by the full-vector finite element method (FEM). The proposed filter can filter out y-polarized mode, while the x-polarized mode can be guided. The confinement loss of the y-polarized mode at the wavelength of 1.31 μm is achieved of 696.79 dB/cm, while the x-polarized loss is only 4.34 dB/cm. According to numerical results, 20 dB bandwidth of the proposed filter with a maximum value of crosstalk of 601.37 dB is achieved of 650 nm that range from 1.1 to 1.75 μm. Furthermore, the insertion loss of the guided mode (x-polarization) is as low as 0.142 dB for 1 mm of fiber length. Moreover, by optimizing the structural parameters, it has shown that the proposed filter can be effective at any wavelength at the optical communication window.

  相似文献   

13.
Wang  Jianshuai  Pei  Li  Wu  Liangying  Wang  Ji  Ruan  Zuliang  Zheng  Jingjing 《Plasmonics (Norwell, Mass.)》2020,15(2):327-333

A surface plasmon resonance (SPR) sensor based on a photonic crystal fiber (PCF) is proposed for low refractive index (RI) detection. The core of PCF is formed by two-layer air walls and either layer is composed of six identical sector rings with negative curvature. Plasmonic material gold (Au) is coated on the external cladding surface. Finite element method (FEM) is applied to investigate the performance of the SPR sensor. Results show that the sensor is independent of polarization due to the coincident coupling properties of the two polarized modes. Additionally, in low RI ranging from 1.20 to 1.33, the sensor keeps a high spectral sensitivity with an average value of 7738 nm/RIU. When RI varies from 1.32 to 1.33, the resolution reaches to its maximum of 8.3 × 10−6. The proposed sensor shows much significance in low RI detection, which is promising in real-time measurement for medical, water pollution, and humidity.

  相似文献   

14.
Inspired by the classic theory, we suggest that the performance of a D-shaped fiber optical surface plasmon resonance (SPR) sensor can be improved by manipulating the fiber core mode. To demonstrate this, we propose a novel fiber SPR sensor based on a hollow core photonic crystal fiber with liquid mixture filled in the core. The fiber sensor design involves a side-polished fiber with gold film deposited on the polished plane and liquid filling. Numerical simulation results suggest that by tuning the refractive index of the liquid mixture, the predicted sensitivity will be over 6,430 nm/refractive index unit for an aqueous environment, which is competitive for fiber chemical sensing. This optimization method may lead to an ultrahigh sensitivityfiber optical biosensor.  相似文献   

15.
Wang  Chao  Zhang  Yiyang  Wu  Zheng  Zhang  Guoxu  Zhang  Yajing  Jiang  Linghong 《Plasmonics (Norwell, Mass.)》2020,15(5):1331-1338
Plasmonics - In this paper, a broadband single polarization photonic crystal fiber (PCF) filter around 1.55 μm is presented on account of surface plasmon resonance. The finite element...  相似文献   

16.
The polarization characteristics of a dual-core photonic crystal fiber (PCF) with a metal wire filled into the cladding air hole between the two cores have been investigated. Numerical investigation shows that the inclusion of the metal wire greatly changes the coupling characteristics of the modes in the two cores. In fact, the coupling lengths of the two polarizations show increased difference, which leads to the possibility of designing a dual-core PCF with a coupling length ratio of 1:2 for the two polarization states. The proposed polarization splitter shows extinction ratios as low as ?20 dB with bandwidths as great as 146 nm.  相似文献   

17.
Liu  Qiang  Li  Shuguang  Li  Jianshe  Chen  Hailiang  Fan  Zhenkai  An  Guowen  Li  Hui  Zi  Jianchen 《Plasmonics (Norwell, Mass.)》2016,11(3):857-863
Plasmonics - A polarization filter at the two communication windows of 1.31 and 1.55 μm based on photonic crystal fiber (PCF) coated by nanoscale gold film is proposed. The effects of...  相似文献   

18.
In this article, an anisotropic magnetized ferrite photonic crystal model is analyzed by using the finite-difference time-domain method. The electromagnetic wave propagates in anisotropic ferrite material and forms two kinds of Eigen propagation mode: left-hand circular polarization (LCP) mode and right-hand circular polarization (RCP) mode. Therefore, the ferrite material is used to produce photonic crystal and wave polarized by these two kinds of polarization modes can be obtained. Because the electromagnetic properties of the ferrite material are greatly influenced by the bias magnetic field, the ferrite photonic crystal band gap can be controlled by adjusting the intensity of the bias magnetic field, and then a magnetron photonic crystal filter is formed. The results show that the magnetic photonic crystal with the bias magnetic field to the LCP/RCP wave forms different pass band and band gap, which can obtain different forms of polarized wave.  相似文献   

19.
Plasmonics - Nowadays, plasmonic sensors based on photonic crystal fiber (PCF) attracted a great deal of attention in the field of optical sensing. Opening-up dual-core photonic crystal fibers...  相似文献   

20.
An  Guowen  Li  Shuguang  Yan  Xin  Zhang  Xuenan  Yuan  Zhenyu  Wang  Haiyang  Zhang  Yanan  Hao  Xiaopeng  Shao  Yaonan  Han  Zhicong 《Plasmonics (Norwell, Mass.)》2017,12(2):465-471
Plasmonics - We propose and investigate a photonic crystal fiber (PCF) refractive index sensor with triangular lattice and four large-size channels based on surface plasmon resonance. In such...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号