首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this research was to evaluate a novel fiberoptic photometer for its ability to monitor physical instabilities occurring in concentrated emulsions during storage. For this, the fiber-optic photometer was used to measure transmission of oil-in-water emulsions stabilized with hypromellose (HPMC) as a function of oil volume fraction and droplet size distribution (DSD). To detect physical instabilities like creaming and coalescence, the transmissivity of the samples was studied at 2 different hight levels over a certain period of time. The corresponding droplet size distributions were determined by laser diffraction with PIDS. Transmissivity was found to depend on the number of dispersed droplets and thus is sensitive to both the variation of phase volume fraction as well as the emulsions droplet size distribution. At constant DSD, light transmission decreased linearly with increasing oil content within a large interval of phase volume fractions from 0.01 to 0.3. At constant phase volume fraction, an increase in droplet size increased light transmission. Investigation of creaming on emulsions with different droplet size distributions showed changes in the initial delay times and creaming velocities. In contrast to creaming phenomenon coalescence can be identified by height independent changes of the transmissivity. In conclusion, transmissivity of oil-in-water emulsions observed by the novel fiber-optic photometer is sensitive to phase volume fraction, droplet size distribution, and thus can be used as a tool for stability studies on concentrated emulsions. Published: August 31, 2007  相似文献   

2.
Water-in-oil emulsions provide an alternative for long-term stabilization of microorganisms. Maintaining physical stability of the emulsion and cell viability is critical for large-scale application. Water-in-oil (W/O) emulsions were prepared with the biolarvacide Lagenidium giganteum and the green alga Chlorella vulgaris. Physical stability was measured via light scattering measurements of the internal phase droplets and cell viability was measured by plating and enumerating colony forming units. Emulsions were demonstrated to stabilize L. giganteum and C. vulgaris for more than 4 months without refrigeration. Introducing nutrients into the internal phase of W/O emulsions without cells had no significant effect on changes in aqueous phase droplet size dynamics. Internal phase droplet size changes that occurred over time were greater in the presence of cells. Increases in droplet size were correlated with cell death indicating measurement of internal phase droplet size changes may be an approach for monitoring declines in cell viability during storage.  相似文献   

3.
Microgels formed from beta-lactoglobulin were used to prepare oil-in-water emulsions in order to examine their emulsifying capacity. Corn oil emulsions prepared with microgels of pure beta-lactoglobulin at pH 5.8 were initially stable, but a fraction of the droplets quickly flocculated to form a creamed layer that could not be dispersed by shear, which was attributed to hydrophobic attractions between the microgels on adjoining droplets. Emulsions prepared from microgels of beta-lactoglobulin and pectin at pH 4.75 possessed greater droplet sizes at lower concentrations, yet all emulsions were relatively stable to irreversible flocculation. Increased stability of emulsions stabilized by BP-gels was attributed to the presence of pectin on the surface of microgels, which increased repulsions between adjoining droplets. Stable corn oil emulsions were still prepared from microgels that were previously dialyzed to remove non-aggregated protein, which verified that the microgels were responsible for stabilizing emulsion droplets. Equilibrium surface pressure of corn oil droplets was similar between microgels and the unheated beta-lactoglobulin and pectin, yet the dynamic surface pressure was reduced at intermediate times and indicated a slow relaxation and deformation of the microgels at the interface. Microgels formed with pectin stabilized emulsions containing 90 % limonene for up to 5 days of room temperature storage, demonstrating the capacity of such protein microgels to stabilize flavor oil emulsions.  相似文献   

4.
The study reported here aims to obtain information on how thickener type and concentration, and oil content influence rheology, particle size, particle charge and microstructure in o/w model emulsions. Emulsions were prepared at two oil concentrations (5 and 30 % wt/wt), each with three CMC concentrations (0.2, 0.3, and 0.4 % wt/wt), or three starch concentrations (2, 3, and 4 % wt/wt). For each oil concentration, a sample without any added thickener was prepared as reference. Both CMC and swollen starch granules showed a dominating effect on emulsion flow behavior, although the presence and concentration of fat droplets also played an important role. Viscoelasticity of CMC-based emulsions mainly depended of oil concentration whilst in starch-based emulsions the most influential ingredient was starch. A similar situation was detected in terms of particle size distribution; CMC effect was dependent on oil content and starch effect was mainly related to the volume occupied by swollen granules. Differences in microstructure and particle size distribution between CMC and starch emulsions were related to their rheological behavior. Apart from enabling the acquisition of food emulsions with different composition but with similar rheological behavior by adding different hydrocolloids, here we consider thickener effect on other properties in order to obtain food emulsions with adequate characteristics.  相似文献   

5.
Oil is well-known to act as antifoam and to destabilize foam lamellae by bridging between two adjacent foam bubbles. It was hypothesized that an optimal oil droplet size exists with respect to the stability of a foamed emulsions, where the oil droplets are sufficiently small to postpone bridging and the amount of free surfactant is sufficient to stabilize the oil/water-interface and the air/water-interface. Emulsions with 0.3% Quillaja saponin and a median oil drop-let size between 0.2 and 2.0 μm were prepared under varying homogenization conditions and characterized in a dynamic foam analyzer. Results confirmed the above mentioned hypothesis. Stability of the foamed emulsions considerably increased with increasing pH, which was attributed to electrostatic repulsion between oil droplets and the effect on the balance between disjoining pressure and capillary pressure. In a binary system containing proteins and saponins, stability of foamed emulsions can be further increased when emulsifiers are added sequentially. When the emulsion is stabilized by β-LG and QS is added after emulsification stability of the foamed emulsion is distinctly higher compared to systems, where QS and β-LG are added prior to emulsification. Future studies should deepen our understanding of these complex dispersed systems by investigating the molecular interactions including other proteins and additional food constituents.  相似文献   

6.
The initial characteristics of emulsions and the rearrangement of the oil droplets in the film matrix during film drying, which defines its microstructure, has an important role in the physical properties of the emulsion-based films. The objective of this work was to study the effect of the microstructure (two droplet size distributions) and stability (with or without surfactant) of HPMC oil-in-water emulsions over physical properties of HPMC emulsion-based edible films. HPMC was used to prepare sunflower oil-in-water emulsions containing 0.3 or 1.0% (w/w) of oil with or without SDS, as surfactant, using an ultrasonic homogenizer. Microstructure, rheological properties and stability of emulsions (creaming) were measured. In addition, microstructure, coalescence of oil droplets, surface free energy, optical and mechanical properties and water vapor transfer of HPMC films were evaluated. Image analysis did not show differences among droplet size distributions of emulsions prepared at different oil contents; however, by using SDS the droplet size distributions were shifted to lower values. Volume mean diameters were 3.79 and 3.77μm for emulsions containing 0.3 and 1.0% without surfactant, respectively, and 2.72 and 2.71μm for emulsions with SDS. Emulsions formulated with 1.0% of oil presented higher stability, with almost no change during 5 and 3 days of storage, for emulsions with and without SDS, respectively. Internal and surface microstructure of emulsion-based films was influenced by the degree of coalescence and creaming of the oil droplets. No effect of microstructure over the surface free energy of films was found. The incorporation of oil impaired the optical properties of films due to light scattering of light. Addition of oil and SDS decreased the stress at break of the emulsion-based films. The replace of HPMC by oil and SDS produce a lower "amount" of network structure in the films, leading to a weakening of their structure. The oil content and SDS addition had an effect over the microstructure and physical properties of HPMC-based emulsions which lead to different microstructures during film formation. The way that oil droplets were structured into the film had an enormous influence over the physical properties of HPMC films.  相似文献   

7.
Chitosan, a natural, cationic polysaccharide, may be a hydrocolloid strategic to formulate acidic food products, as it can act as both bio-functional and technofunctional constituent. Typically, acetic acid is used to disperse chitosan in aqueous media, but the use of this acid is limited in food formulations due to its flavor. In this study, chitosan was firstly dispersed (0.1% m/V) in lactic acid aqueous solutions (pH 3.0, 3.5 or 4.0), and then evaluated regarding its thickener and emulsion stabilizer properties. O/W emulsions were prepared and characterized in terms of rheological properties, droplets average diameters and droplets ζ-potential. Emulsions containing chitosan were 3 times more viscous than controls without chitosan, and presented storage modulus (G’) higher than loss modulus (G”). Furthermore, they displayed two different populations of droplets (average diameters of 44 and 365 nm) and positive ζ-potential values (+50 mV). Droplets average diameters and ζ-potential did not present significant changes (p > 0.05) after storage at 25 °C during 7 days. This study showed that i) food organic acids other than acetic acetic acid can be used to disperse chitosan for technological purposes, and ii) chitosan dispersed at very low concentrations (0.1 m/V %) had relevant effects on rheological and physicochemical aspects of food-grade emulsions.  相似文献   

8.
High‐pressure homogenizers are frequently employed for the homogenization of low‐viscosity emulsions containing a proportion of disperse phase which is not too high. High‐pressure homogenizers essentially consist of a high‐pressure pump and a homogenizing nozzle. The design of the homogenizing nozzle influences the flow of the emulsion in the nozzle itself and hence the results of droplet disruption. It is shown which mechanism in frequently used homogenizing nozzles is usually responsible for disruption. Experimental results reveal the effects of the dispersed phase content and the viscosity of the disperse and continuous phases in different nozzles. The results can be explained on the basis of the mechanisms of disruption. Finally, the homogenizing nozzles presented are directly compared with one another.  相似文献   

9.
Temperature cycling across the glass transition of the aqueous phase of oil-in-water emulsions stabilized by whey protein isolate was considered as a possible factor affecting stability. Emulsions were formulated with an aqueous phase containing 80% (w/w) fructose, fructose:glucose 1:1 or glucose, in order to prepare a glass forming aqueous phase with sugar concentration corresponding to that of the unfrozen phase of the maximally freeze-concentrated solutions. This allowed thermal cycling across the glass transition in the absence of the formation of ice crystals. Emulsion stability was studied using differential scanning calorimetry, dynamic light scattering and by visual analysis of the morphology of the systems. Emulsified systems undergoing glass transition cycles of the aqueous phase did not show destabilization of the dispersed (crystallized) lipid phase. Sugar crystallization in the aqueous phase, which occurred when glucose systems were stored above the Tg, led to emulsion breakdown. In this study, the formation of a glassy structure in the continuous aqueous phase preserved the interfacial structure of WPI, thus protecting the dispersed lipid phase from destabilization. On the contrary, glucose crystallization caused disruption of the interfacial membrane structure and loss of integrity of the interface which resulted in extensive lipid phase destabilization.  相似文献   

10.
The growth rates and yields of Listeria monocytogenes and Yersinia enterocolitica were determined in liquid culture media, and in model oil-in-water emulsions that contained 30, 70 or 83% (v/v) hexadecane. In emulsions with a mean droplet size of 2 μm containing 83% (v/v) hexadecane, the growth of both organisms resulted in decreased yields. Additionally, in these emulsions adjusted to pH 5·0 or 4·4 the growth rate of L. monocytogenes was significantly less than in other model systems which had an aqueous phase of equivalent chemical composition. Microscopic examination of the 83% (v/v) emulsion showed that its microstructure immobilized the bacteria, which were constrained to grow as colonies. Bacteria behaved similarly in model emulsions of either hexadecane or sunflower oil. Manipulation of the droplet size distribution of the emulsions changed the form and rate of growth of bacteria within them.  相似文献   

11.
Stability of oil-in-water emulsions during freezing and thawing is regulated by the phase transitions occurring in the continuous and dispersed phases upon thermal treatments and by the composition of the interfacial membrane. In the present study, the impact of the water phase formulation (0–2.5–5–10–20–30–40% w/w sucrose), the interfacial composition [whey protein isolates (WPI) or sodium caseinate (NaCas) used at different concentrations], and the particle size on the stability of hydrogenated palm kernel oil (30% w/w)-in-water systems was investigated. Phase/state behaviour of the continuous and dispersed phases and emulsion destabilisation were studied by differential scanning calorimetry. System morphology was observed by particle size analysis and optical microscopy. The presence of sucrose in the aqueous phase and reduced particle size distribution significantly improved emulsion stability. WPI showed better stabilising properties than NaCas at lipid to protein ratios of 10:1, 7.5:1, 5:1 and 4:1. Increased WPI concentration significantly improved emulsion resistance to breakdown during freeze–thaw cycling. NaCas showed poor stabilising properties and was ineffective in reducing emulsion destabilisation at 0% sucrose at all the lipid to protein ratios.  相似文献   

12.
Emulsions are widely used as topical formulations in the pharmaceutical and cosmetic industries. They are thermodynamically unstable and require emulsifiers for stabilization. Studies have indicated that emulsifiers could affect topical delivery of actives, and this study was therefore designed to investigate the effects of different polymers, applied as emulsifiers, as well as the effects of pH on the release and topical delivery of the active. O/w emulsions were prepared by the layer-by-layer technique, with whey protein forming the first layer around the oil droplets, while either chitosan or carrageenan was subsequently adsorbed to the protein at the interface. Additionally, the emulsions were prepared at three different pH values to introduce different charges to the polymers. The active ingredient, salicylic acid, was incorporated into the oil phase of the emulsions. Physical characterization of the resulting formulations, i.e., droplet size, zeta potential, stability, and turbidity in the water phase, was performed. Release studies were conducted, after which skin absorption studies were performed on the five most stable emulsions, by using Franz type diffusion cells and utilizing human, abdominal skin membranes. It was found that an increase in emulsion droplet charge could negatively affect the release of salicylic acid from these formulations. Contrary, positively charged emulsion droplets were found to enhance dermal and transdermal delivery of salicylic acid from emulsions. It was hypothesized that electrostatic complex formation between the emulsifier and salicylic acid could affect its release, whereas electrostatic interaction between the emulsion droplets and skin could influence dermal/transdermal delivery of the active.  相似文献   

13.
We investigated the effects of Tween emulsifier fatty acid chain length on the shear stability and crystallization behavior of 35 wt% partially crystalline oil-in-water emulsions prepared with and without 1 wt% sodium caseinate. Emulsions containing sodium caseinate and Tween 20, 40, 60 or 80 varied in shear stability, degree of supercooling and crystallization behavior depending on the type and concentration of Tween as well as the presence of protein. Generally, emulsions containing the unsaturated emulsifier Tween 80 were the most shear sensitive followed by the saturated emulsifiers Tween 20, 40 and 60 in order of increasing fatty acid chain length. Long chain saturated Tween emulsifiers (40 and 60) improved shear stability regardless of whether sodium caseinate was present indicating that alone, these emulsifiers form more robust interfacial films compared to the saturated short chain length Tween 20 and Tween 80. In emulsions prepared with sodium caseinate, the degree of supercooling decreased and the crystallization rate diminished with increasing saturated fatty acid chain length but only negligible changes were found without sodium caseinate. Together, these findings indicate that long chain saturated Tween emulsifiers provide better emulsion stability regardless of the presence of sodium caseinate but with sodium caseinate, stability may also be affected by changes to fat crystallization. These novel findings provide guidance on how combinations of proteins and emulsifiers can be used to modify and control the stability of partially crystalline oil-in-water emulsions through their combined effects on the properties of the interfacial film and fat crystallization.  相似文献   

14.
Interest in using nanoemulsions as delivery systems for lipophilic food ingredients is growing due to their high optical clarity, good physical stability, and ability to increase bioavailability. Nanoemulsion-based delivery systems may need to be incorporated into food matrices that also contain conventional emulsions. The aim of this work was to evaluate the effect of adding nanoemulsions (d?<?200 nm) to conventional emulsions (d?>?200 nm) on the creaming stability and microstructure of the mixed systems. Droplet flocculation and rapid creaming was observed when the nanoemulsion concentration exceeded a particular level: the critical flocculation concentration (CFC) was 3.75 % and 0.25 % (v/v) for conventional emulsions with average droplet diameters of 350 and 250 nm, respectively. Confocal microscopy indicated that there was appreciable droplet flocculation, and the fraction of individual droplets with diameters?<?100 nm decreased after 14 days storage, which was probably due to Ostwald ripening and/or coalescence. The results of the present study might have important implications for the incorporation of nanoemulsion-based delivery systems into food products containing larger fat droplets, such as dressings, sauces, or beverages.  相似文献   

15.
The dispersed particulates present in chocolate are shown to influence the microstructural development and fat crystal growth of cocoa butter (CB) during storage. Atomic force microscopy of both chocolate and CB showed that surface crystal growth on both materials was similar during isothermal (25 °C) storage over 4 weeks. However, unique micron-scale amorphous mounds also appeared on the surface of chocolate. With time, these regions increased in number and diameter and eventually solidified into clustered crystalline masses. X-Ray diffraction, solid fat content, and whiteness index measurements substantiated the observed crystal growth, with gradual increases in the proportion of the form VI polymorph, solid fat, and whiteness over time. Overall, these findings suggest that typical chocolate refining and tempering protocols result in a heterogeneously distributed particulate network that has a substantial impact on the morphology and crystallization pathway of the fat phase.  相似文献   

16.
Eighty-five samples of cocoa products sampled in Canada were analysed for ochratoxin A (OTA) and aflatoxins in 2011–2012. Inclusion of the aflatoxins in this survey required additional method development. Chocolate was extracted with methanol–water plus NaCl, while for cocoa two successive extractions with methanol and methanol–water were made. Extracts were cleaned on an AflaOchra immunoaffinity column (IAC). Determination was by reversed phase high performance liquid chromatography (HPLC). Detection of the aflatoxins was with a post-column photochemical reactor and of OTA by fluorescence detection. Mean limits of quantification (LOQ) of chocolate and cocoa powders were 0.16 ng/g (OTA) and 0.07 ng/g (aflatoxin B1), respectively. Survey results showed that the incidences of OTA above the LOQ in natural cocoa were 15/15 (mean 1.17 ng/g), 20/21 for alkalized cocoa (mean 1.06 ng/g), 9/9 for baking chocolate (mean 0.49 ng/g), 20/20 for dark chocolate (mean 0.39 ng/g), 7/10 for milk chocolate (mean 0.19 ng/g), 5/5 for cocoa liquor (mean 0.43 ng/g), and 0/5 for cocoa butter. These results confirm our previous work with OTA. In the same samples, incidences of aflatoxin B1 above the LOQ were 14/15 for natural cocoa (mean 0.86 ng/g), 20/21 for alkalized cocoa (mean 0.37 ng/g), 7/9 for baking chocolate (mean 0.22 ng/g), 16/20 for dark chocolate (mean 0.19 ng/g), 7/10 for milk chocolate (mean 0.09 ng/g), 4/5 for cocoa liquor (mean 0.43 ng/g), and 0/5 for cocoa butter. Both aflatoxins and OTA were confirmed by HPLC-MS/MS when OTA or aflatoxin levels found were above 2 ng/g in cocoa.  相似文献   

17.
Ice fraction was measured for solutions containing glucose, sucrose, gelatin, and egg albumin at various concentrations at temperatures from 0 to -20°C. For glucose and sucrose solutions, the ice fraction was accurately measured from phase diagram, which could be interpreted by solution thermodynamics with two parameters. The ice fractions of these sample solutions increased with decreases in both temperature and concentration. Because of the limited applicability of the phase diagram method only to systems with low molecular weight materials, the DSC method was also used for ice fraction measurement. The DSC method, corrected for temperature-dependent latent heat of ice and corrected with Pham’s equation, provided a good approximation for ice fractions with general applicability. The DSC method was used to measure the ice fractions of gelatin and egg albumin gels as a function of solute concentration. The freezing point and bound water of gelatin and egg albumin gels were described as a function of concentration. Effects of the differences in molecular structure on ice fraction were analyzed for various carbohydrate solutions at the same concentration. The ice fraction proved to be strongly dependent on the colligative properties of the solution with nonideal behavior.  相似文献   

18.
Liposome dispersions (bilayer composition Phospholipon 100H/dicetylphosphate (molar ratio 10:1) dispersed in 10 mM Tris buffer) are frozen in a differential scanning calorimeter. In the cooling curves of the dispersions a heat-flow below -40 degrees C is observed. This heat-flow is due to the crystallization of maximally supercooled water. Evidence is provided that at this temperature, defined as the homogeneous nucleation temperature, part or all encapsulated water in the liposomes crystallizes. At a cooling rate of 10 degrees C/min only for small liposomes with particle sizes below approximately 0.2 micron the internal volume crystallizes at the homogeneous nucleation temperature. After a freezing/thawing cycle of the liposomal dispersions retention of the water-soluble marker carboxyfluorescein (CF) was significantly better if crystallization of the encapsulated volume occurred at the homogeneous nucleation temperature. Up to 55% retention of CF in dispersions with mean vesicle sizes below 0.2 micron was found after storage for 45 min at -50 or -75 degrees C. Only relatively small particle size alterations were found in comparison with the original mean particle sizes after a freezing/thawing cycle with storage for 45 min at -50 or -75 degrees C. Independent of particle size, dispersions stored for 45 min at -25 degrees C showed low CF retention (less than 10%) after thawing. For most of the liposome dispersions stored at -25 degrees C, large particle size alterations compared to the original particle sizes were observed after a freezing/thawing cycle.  相似文献   

19.
为了快速高效的观察兰科植物铁皮石斛的显微结构,利用光镜和改进的蔗糖保护--液氮速冻冰冻切片法,观察铁皮石斛根、茎、叶的显微结构。该技术方法是将铁皮石斛器官经过蔗糖磷酸缓冲液保护液处理后抽真空,再经过液氮速冻、包埋、切片、展片观察、染色以及拍照等步骤,制作出铁皮石斛根、茎和叶较完整的显微结构切片。研究结果表明,适合铁皮石斛根的最适条件为:蔗糖质量体积分数为8%、冷凝温度-25℃、切片厚度20μm;茎的最适条件为:蔗糖质量体积分数为16%、冷凝温度-20℃、切片厚度15μm;叶的最适条件为:蔗糖质量体积分数为4%、冷凝温度-20℃、切片厚度10μm。该研究在兰科植物显微结构观察和组织化学研究中将具有广阔的应用前景。  相似文献   

20.
The thermal and rheological history of mayonnaise during freezing and its dispersion stability after the freeze-thaw process were investigated. Mayonnaise was cooled to freeze and stored at ?20 to ?40 °C while monitoring the temperature; penetration tests were conducted on the mayonnaise, which was sampled at selected times during isothermal storage at ?20 °C. Significant increases in the temperature and stress values due to water-phase crystallization and subsequent oil-phase crystallization were observed. The water phase crystallized during the cooling step in all the tested mayonnaise samples. The oil phases of the prepared mayonnaise (with rapeseed oil) and commercial mayonnaise crystallized during isothermal storage after 6 and 4 h, respectively, at ?20 °C. The dispersion stability was evaluated from the separation ratio, which was defined as the weight ratio of separated oil after centrifuging to the total amount of oil in the commercial mayonnaise. The separation ratio rapidly increased after 4 h of freezing. This result suggests that crystallization of the oil phase is strongly related to the dispersion stability of mayonnaise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号