首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate plasmon excitations within a regular grating of double-layered gold/insulator nanoparticles in the infrared and visible spectral region. Provided a flat gold film as substrate, strong coupling between the localized surface plasmon modes and their image-like excitations in the metal is observed. The interaction results in a strong red shift of the plasmon mode as well as the splitting of the modes into levels of different angular momenta, often referred to as plasmon hybridization. The diameters of the nanoparticles are designed in a way that the splitting of the resonances occurs in the spectral region between 0.1 and 1 eV, thus being accessible using an infrared microscope. Moreover, we investigated the infrared absorption signal of gratings that contain two differently sized nanoparticles. The interaction between two autonomous localized surface plasmon excitations is investigated by analyzing their crossing behavior. In contrast to the interaction between localized surface plasmons and propagating plasmon excitations which results in pronounced anticrossing, the presented structures show no interaction between two autonomous localized surface plasmons. Finally, plasmon excitations of the nanostructured surfaces in the visible spectral region are demonstrated through photographs acquired at three different illumination angles. The change in color of the gratings demonstrates the complex interaction between propagating and localized surface plasmon modes.  相似文献   

2.
We demonstrate directional enhanced fluorescence emission from fluorophores located above gold wire gratings. In contrast to previous studies on corrugated films, efficient coupling was recorded for multiple plasmon modes associated with both the active and substrate side of the wires. This difference is likely due to the subtle differences in how light interacts with corrugated films versus metal films with periodic subwavelength slots. For corrugated films, coupling between modes on opposite sides of the grating are out of phase, and therefore plasmon modes on the opposite side of the grating are only weakly excited. For wire gratings, transmission and reflection features have been modeled well with a dynamical diffraction model that includes surface plasmons, which allows for efficient coupling to surface plasmon modes on both sides of the grating. We also compared the two mechanisms for fluorescent enhancement, namely the intense electromagnetic field associated with surface plasmons and excited fluorophores radiating via surface plasmon modes. We found the latter mechanism clearly dominant.  相似文献   

3.
Sensors based on surface plasmon resonance (SPR) allow rapid, label-free, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light into a thin metallic film. Although SPR is not intrinsically a radiative process, when the metallic coating which support the plasmonic wave exhibits a significant surface roughness, the surface plasmon can itself couple to the local photon states, and emit light. Here we show that using silver coated optical fibres, this novel SPR transducing mechanism offers significant advantages compare to traditional reflectance based measurements such as lower dependency on the metallic thickness and higher signal to noise ratio. Furthermore, we show that more complex sensor architectures with multiple sensing regions scattered along a single optical fibre enable multiplexed detection and dynamic self referencing of the sensing signal. Moreover, this alternative approach allows to combine two different sensing technologies, SPR and fluorescence sensing within the same device, which has never been demonstrated previously. As a preliminary proof of concept of potential application, this approach has been used to demonstrate the detection of the seasonal influenza A virus.  相似文献   

4.

Ring modes with large wave vectors cannot be easily excited on a single disk by the plane wave illumination with the polarization parallel to the disk interface. In this work, we show that special antisymmetric ring gap modes on the surface of the disk in close proximity to the metallic thin film can be excited in the visible light region of the electromagnetic spectrum. In the presence of the film, the strong plasmon interaction between disk and film causes ring gap modes to have lower energies and be more easily excited. We apply the plasmon hybridization method to illustrate the ring gap modes arising from the interaction between the localized disk plasmons and the continuum surface plasmons. The calculated hybridization data show good agreement with the results of finite element simulations. The excitation of ring gap modes provides further insight into the strong coupling of plasmons and the design of novel nanostructures.

  相似文献   

5.
In this paper, we propose a method to tailor the nanofocusing of plasmons on graphene plasmonic lens, which is composed of graphene and circular dielectric gratings of magneto-optical material beneath it. With an external magnetic field parallel to graphene surface, the magneto-optical effect of substrate leads to the difference in modal indices of graphene plasmons, which also introduces an additional relative phase difference between these two plasmons during excitation and propagation. Together, these two effects enable us to tailor the position of focal points through external magnetic field, which has been described by an analytical approach based on phase matching and verified by numerical simulations. With an operation wavelength of 8500 nm and an external magnetic field from B = ?1 T to B = 1 T, a shift distance over one and a half times of plasmons wavelength for focal points or donut-shaped field profiles can be obtained under linearly or circularly polarized light. The proposed scheme has potentials in diverse applications, such as the tunable nanofocusing and particle manipulation.  相似文献   

6.
Liu  Liangliang  Li  Zhuo  Xu  Bingzheng  Xu  Jia  Chen  Chen  Gu  Changqing 《Plasmonics (Norwell, Mass.)》2017,12(2):439-444

In this work, we report a fishbone-like high-efficiency low-pass plasmonic filter based on a double-layered conformal surface plasmon waveguide (CSPW) which consists of double-layered symmetrical metal gratings (SMGs) of fishbone shape. Efficient mode conversion between the quasi-transverse electromagnetic (TEM) waves in the microstrip line and the conformal surface plasmons (CSPs) on the double-layered CSPW is realized by using gradient double-layered SMGs and impedance matching technique. Experimental results of the transmission and reflection coefficients of the straight sample show excellent loss-pass performance and agree well with the numerical simulations. The curved samples exhibit low radiation loss when the double-layered CSPW is conformal or even bent thanks to the high confinement of CSPs. The proposed structure can find potential applications in integrating conventional circuits with CSPs devices at microwave and terahertz frequencies.

  相似文献   

7.
In this paper, we study the nanoscale-focusing effect in the far field for a spiral plasmonic lens with a concentric annular groove by using finite-difference time domain simulation. The simulation result demonstrates that a left-hand spiral plasmonic lens can concentrate an incident right-hand circular polarization light into a focal spot at the exit surface. And this spot can be focused into far field due to constructive interference of the scattered light by the annular groove. The focal length and the focal depth can be adjusted by changing the groove radius and number of grooves within a certain range. These properties make it possible to probe the signal of spiral plasmonic lens in far field by using conventional optical devices.  相似文献   

8.
In this paper, we investigate the focusing properties of a plasmonic lens with multiple-turn spiral nano-structures, and analyze its field enhancement effect based on the phase matching theory and finite-difference time-domain simulation. The simulation result demonstrates that a left-hand spiral plasmonic lens can concentrate an incident right-hand circular polarization light into a focal spot with a high focal depth. The intensity of the focal spot could be controlled by altering the number of turns, the radius and the width of the spiral slot. And the focal spot is smaller and has a higher intensity compared to the incident linearly polarized light. This design can also eliminate the requirement of centering the incident beam to the plasmonic lens, making it possible to be used in plasmonic lens array, optical data storage, detection, and other applications.  相似文献   

9.
We report on a surface design of thin film silicon solar cells based on silver nanoparticle arrays and blazed grating arrays. The light transmittance is increased at the front surface of the cells, utilizing the surface plasmon resonance effect induced by silver nanoparticle arrays. As a reflection layer structure, blazed gratings are placed at the rear surface to increase the light reflectance at bottom of the thin film cells. With the combination of the silver nanoparticle arrays and the blazed gratings, the light trapping efficiency of the thin film solar cell is characterized by its light absorptance, which is determined from the transmittance at front surface and the reflectance at bottom, via the finite-difference time-domain (FDTD) numerical simulation method. The results reveal that the light trapping efficiency is enhanced as the structural parameters are optimized. This work also shows that the surface plasmon resonance effect induced by the silver nanoparticles and the grating characteristics of the blazed gratings play crucial roles in the design of the thin film silicon solar cells.  相似文献   

10.
Li  Jie  Yang  Chaojie  Li  Jiaming  Li  Ziwei  Zu  Shuai  Song  Siyu  Zhao  Huabo  Lin  Feng  Zhu  Xing 《Plasmonics (Norwell, Mass.)》2014,9(4):879-886

In this review, we show that by designing the metallic nanostructures, the surface plasmon (SP) focusing has been achieved, with the focusing spot at a subwavelength scale. The central idea is based on the principle of optical interference that the constructive superposition of SPs with phase matching can result in a considerable electric-field enhancement of SPs in the near field, exhibiting a pronounced focusing spot. We first reviewed several new designs for surface plasmon focusing by controlling the metallic geometry or incident light polarization: We made an in-plane plasmonic Fresnel zone plates, a counterpart in optics, which produces an obvious SP focusing effect; We also fabricated the symmetry broken nanocorrals which can provide the spatial phase difference for SPs, and then we propose another plasmon focusing approach by using semicircular nanoslits, which gives rise to the phase difference through changing refractive index of the medium in the nanoslits. Further, we showed that the spiral metallic nanostructure can be severed as plasmonic lens to control the plasmon focusing under a linearly polarized light with different angles.

  相似文献   

11.
We present a new approach to surface plasmon microscopy with high refractive index sensitivity and spatial resolution that is not limited by the propagation length of surface plasmons. It is based on a nanostructured metallic sensor surface supporting Bragg-scattered surface plasmons. We show that these non-propagating surface plasmon modes are excellently suited for spatially resolved observations of refractive index variations on the sensor surface owing to their highly confined field profile perpendicular to as well as parallel to the metal interface. The presented theoretical study reveals that this approach enables reaching similar refractive index sensitivity as regular surface plasmon resonance (SPR) microscopy and offers the advantage of improved spatial resolution when observing dielectric features with lateral size <10???m for the wavelength around 800?nm and gold as the SPR-active metal. This paper demonstrates the potential of Bragg-scattered surface plasmon microscopy for high-throughput SPR biosensing with high-density microarrays.  相似文献   

12.
Plasmonic gratings have been widely used for light harvesting in thin-film solar cells (TFSCs). However, the detrimental parasitic metal absorption loss limits the actual light absorption in the active layer and reduces the power conversion efficiency. In this paper, it is found that the localized surface plasmon resonance (LSPR) used to increase long-wavelength light absorption has significant field concentration around the bottom corners of metal gratings, but the field distribution for the short-wavelength absorption band localizes around the top corners of gratings. Due to the differences between the spatial field distributions and the related mechanisms of metal loss, discrete optical field manipulation is proposed to suppress the ohmic loss mainly associated with LSPR and the interband transition loss associated with metal materials by using Ag-Al bilayer gratings, where Ag has a small absorption coefficient and Al has a high plasmon frequency. Fifteen to forty percent improvements of photocurrents in TFSCs with Ag-Al bilayer gratings are observed in simulation compared to the ones with single-layer metal gratings. This combined metal nanostructure scheme suppresses the loss issue of metal and extends the application potential of plasmonic light-harvesting techniques.  相似文献   

13.
In this letter, we investigate the extraordinary optical transmission behavior of a flat continuous metal film sandwiched by magnetic plasmonic structures. A new mechanism by utilizing higher order magnetic plasmon resonance is proposed to enhance the transmission. Numerical simulation results show that 80 % electromagnetic energy can be transmitted through the middle 50-nm-thick continuous gold film in near-infrared regime. The excitation of the second-order magnetic plasmons and the propagating surface plasmons, as well as the interaction between them accounts for such a high transmission. The interaction of magnetic plasmons and surface plasmons leads to new hybrid modes, and the coupled oscillator model is introduced to analyze this hybridization. This work extends the application range of higher order magnetic plasmons and may have potential in transparent electrode and electromagnetic energy transfer applications.  相似文献   

14.

We present a theory for the calculation of the low energy intraband plasmon frequencies and the electron energy loss (EEL) spectra of single layer and multilayer graphene sheets. Our calculation shows that the number of plasmons that can be excited is equal to the number of graphene layers in the sample. One of these is the dominant in-phase plasmon having a square root dependence on the wave number at low wave vectors, whereas the others are out-of-phase plasmons having near linear dependences on the wave number. The EEL spectra of a single layer graphene shows a single peak at the plasmon frequency, which has been observed experimentally. The EEL spectra of all multilayer graphenes have two peaks, one corresponding to the dominant in-phase plasmon and the other due to the out of phase plasmons. We predict that careful measurement of the EEL of multilayer graphene will show both peaks due to the low energy intraband plasmons.

  相似文献   

15.
We study analytically propagating surface plasmon modes of a Kerr slab sandwiched between two graphene layers. We show that some of the modes that propagate forward at low field intensities start propagating with negative slope of dispersion and positive flux of energy (fast-light surface plasmons) when the field intensity becomes high. We also discover that our structure supports an additional branch of low-intensity fast-light guided modes. The possibility of dynamically switching between the forward and the fast-light plasmon modes by changing the intensity of the excitation light or the chemical potential of the graphene layers opens up wide opportunities for controlling light with light and electrical signals on the nanoscale.  相似文献   

16.
Based on numerical simulations, we show that a very thin metal (Ag) film, otherwise transmissive partially, becomes opaque for transverse magnetic-polarized light in a certain spectrum band when perforated with grating-like slits. Positions of the nearly null transmission band are dependent on the various structure dimensions, particularly on the ridge width for gratings with relatively narrow slit width. Our analyses show that the nearly null transmission is related to resonant excitation of anti-symmetric bound surface plasmon waves at the ridges of the thin metal film gratings and further resulted from destructive interference of waves evolved from the fields at the ridges and slits that are in opposite phase. It is also found that for 2D gratings, the nearly null transmission band appears only for disk array-type gratings and not for the hole array-type gratings. This structure may be applied in novel photonic devices to enhance their performances and functionalities.  相似文献   

17.
We performed numerical investigations of surface plasmon excitation and propagation in structures made of a photochromic polymer layer deposited over a metal surface using the finite-difference time-domain method. We investigated the process of light coupling into surface plasmon polariton excitation using surface relief gratings formed on the top of a polymer layer and compared it with the coupling via rectangular ridges grating made directly in the metal layer. We also performed preliminary studies on the influence of refractive index change of photochromic polymer on surface plasmon polariton propagation conditions.  相似文献   

18.
ABSTRACT The surface structures of the elytra in twenty two species belonging to the subfamily Sericinae (Coleoptera, Melolonthidae) were observed by scanning electron microscopy. For viewing specific characters, elytral punctures and diffraction gratings on interstitial surface were focused on. The elytral punctures of observed Sericid beetles have three representative forms: horseshoe, ocellus, and crease types. The diffraction gratings of the elytra show three distinctive patterns: regular and parallel, discontinued, and interconnected and curved. These patterns of elytral punctures and diffraction gratings considered to be useful for identification.  相似文献   

19.
The detection sensitivities of gap plasmons in gold nanoslit arrays are studied and compared with surface plasmons on outside surface. The nanoslit arrays were fabricated in a 130 nm-thick gold film with various slit widths. For transverse-magnetic (TM) incident wave, the 600 nm-period nanoslit array shows two distinguishable transmission peaks corresponding to the resonances of gap plasmons and surface plasmons, respectively. The surface sensitivities for both modes were compared by coating thin SiO(2) film and different biomolecules on the nanoslit arrays. Our experimental results verify gap plasmons are more sensitive than conventional surface plasmons. Its detection sensitivity increases with the decrease of slit width. The gap plasmon is one order of magnitude sensitive than the surface plasmon for slit widths smaller than 30 nm. We attribute this high sensitivity to the large overlap between biomolecules and nanometer-sized gap plasmons.  相似文献   

20.
A new plasmonic structure based on bimetallic layer is proposed. We analyze the structure and show that bimetallic film plays a crucial role in the management of surface plasmons. The roll of the buffer is discussed, as well. Up to three surface plasmons can be excited simultaneously in the structure. Two of plasmons can be used for two-plasmon spectroscopy. The third plasmon can be used for controlling the temperature of the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号