首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plasmonics - The novel surface plasmon resonance (SPR) sensor based on hybrid structure of Ag-indium tin oxide (ITO)-blue phosphorene (BlueP)/transition metal dichalcogenides (TMDCs)-graphene is...  相似文献   

2.
A surface plasmon resonance (SPR) sensor based on D-shaped photonic crystal fiber (PCF) coated with indium tin oxide (ITO) film is proposed and numerically investigated. Thanks to the adjustable complex refractive index of ITO, the sensor can be operated in the near-infrared (NIR) region. The wavelength sensitivity, amplitude sensitivity, and phase sensitivity are investigated with different fiber structure parameters. Simulation results show that ~6000 nm/refractive index unit (RIU), ~148/RIU, and ~1.2?×?106 deg/RIU/cm sensitivity can be achieved for wavelength interrogation, amplitude interrogation, and phase interrogation, respectively, when the environment refractive index varies between 1.30 and 1.31. It is noted that the wavelength sensitivity and phase sensitivity are more pronounced with larger refractive index. The proposed SPR sensor can be used in various applications, including medicine, environment, and large-scale targets detection.  相似文献   

3.

We theoretically propose a surface plasmon resonance (SPR)-based fiber optic refractive index (RI) sensor. A surface plasmon exciting metallic grating formed with the alternation of indium tin oxide (ITO) and silver (Ag) stripes is considered on the core of the fiber. A thin film of silicon is used as an overlay. Silicon film not only protects the metallic grating from oxidation but also enhances the field to improve the device sensitivity. The sensor is characterized in terms of sensitivity, detection accuracy (DA), figure of merit (FoM), and quality factor (QF). The maximum sensitivity in the RI range 1.33 to 1.38 refractive index unit (RIU) is reported to be?~25 µm/RIU in infra-red region of investigation.

  相似文献   

4.
Ras is a signaling protein involved in a variety of cellular processes. Hence, studying Ras signaling with high spatiotemporal resolution is crucial to understanding the roles of Ras in many important cellular functions. Previously, fluorescence lifetime imaging (FLIM) of fluorescent resonance energy transfer (FRET)-based Ras activity sensors, FRas and FRas-F, have been demonstrated to be useful for measuring the spatiotemporal dynamics of Ras signaling in subcellular micro-compartments. However the predominantly nuclear localization of the sensors'' acceptor has limited its sensitivity. Here, we have overcome this limitation and developed two variants of the existing FRas sensor with different affinities: FRas2-F (Kd∼1.7 µM) and FRas2-M (Kd∼0.5 µM). We demonstrate that, under 2-photon fluorescence lifetime imaging microscopy, FRas2 sensors provide higher sensitivity compared to previous sensors in 293T cells and neurons.  相似文献   

5.
The resonance of surface plasma waves in metallic layers is a strongly polarization-dependent phenomenon by the very nature of the physical effect responsible of that resonance. This implies the necessity of polarization-controlling elements to be added to any operative surface-plasmon-resonance-based sensor. A fully symmetrical, circular-section double deposition of a metallic and a dielectric layer on a uniform-waist tapered optical fiber (SymDL-UWT) permits us to completely eliminate the dependence on polarization of the plasmon excitation, with the corresponding operative advantages and basic theoretical consequences. We depict the fabrication process of these transducers, which is based on the use of a simple and efficient rotating element developed by us, and show the characteristics of the produced devices. No such device has been depicted up to date. As our experimental results show, this kind of devices can be considered a very good option for the development of simple, compact, and efficient chemical and biological sensors.  相似文献   

6.
We propose a highly sensitive temperature sensor based on photonic crystal surface plasmon waveguides comprising different plasmonic active metals such as gold, silver, and aluminum, utilizing surface plasmon resonance phenomenon. We found that the resonance wavelength can be easily and substantially tuned over a broad spectral range by changing the temperature and also by judiciously choosing the different plasmonic metals. Employing coupled mode theory, we found that the proposed sensor can be used in harsh environment with sensitivity as high as ~70 pm/K around telecommunication window.  相似文献   

7.
In this paper, we propose and design a highly sensitive optical biochemical sensor based on two-layer dielectric loaded surface plasmon polariton waveguide (TDLSPPW)-based microring resonator (MRR). By optimizing the structure parameters, the propagation length of the proposed waveguide is ~126 μm, which is about 3 times of that of the polymer dielectric loaded surface plasmon polariton waveguide (DLSPPW) reported. It is demonstrated that the TDLSPPW-based MRR is operated at the under-coupling state, along with the quality factor (Q) of 541.2 and extinction ratio (ER) of 12.2 dB. Moreover, the Q and ER are much more sensitive to the structure parameters of the waveguide, including the waveguide width w, total thickness t, and coupling gap W gap, compared to the low refractive index (RI) layer thickness t 2. The simulation results on the biochemical RI sensing show that the sensitivities of 408.7 and 276.4 nm/RIU for glucose concentration in urine and chemical gases can be achieved, respectively. It is believed that the proposed sensor has potential applications in photonic-integrated biochemical sensing.  相似文献   

8.
Zhao  Xiang  Huang  Tianye  Zeng  Shuwen  Song  Chaolong  Cheng  Zhuo  Wu  Xu  Huang  Pan  Pan  Jianxing  Wu  Yiheng  Shum  Perry Ping 《Plasmonics (Norwell, Mass.)》2020,15(3):769-781
Plasmonics - Surface plasmon resonance (SPR) sensor based on reflectivity measurement has been widely studied for its convenient detection, high sensitivity, and real-time functions. However, the...  相似文献   

9.
We demonstrate the numerical analysis of surface plasmon resonance biosensor based on graphene on aluminum and silicon. Employing matrix method, it is found that the proposed sensor exhibits high imaging sensitivity ~400 RIU?1 to 550 RIU?1 in a large dynamic range from visible to near IR region. It is observed that the application of monolayer or bilayer graphene over aluminum not only protects it from oxidation but also enhances the adsorption of biomolecules, which results in the detection of large refractive indices ranging from aqueous solution to biomolecules (refractive index 1.330 to 1.480) with overall high performance in terms of imaging sensitivity and detection accuracy.  相似文献   

10.
Plasmonics - A highly sensitive absorption-based sensor based on folded split-ring metamaterial graphene resonators (FSRMGRs) is designed, and its biomedical application in terahertz (THz) spectrum...  相似文献   

11.
In this article, a D-shaped photonic crystal fiber based surface plasmon resonance sensor is proposed for refractive index sensing. Surface plasmon resonance effect between surface plasmon polariton modes and fiber core modes of the designed D-shaped photonic crystal fiber is used to measure the refractive index of the analyte. By using finite element method, the sensing properties of the proposed sensor are investigated, and a very high average sensitivity of 7700 nm/RIU with the resolution of 1.30 × 10?5 RIU is obtained for the analyte of different refractive indices varies from 1.43 to 1.46. In the proposed sensor, the analyte and coating of gold are placed on the plane surface of the photonic crystal fiber, hence there is no necessity of the filling of voids, thus it is gentle to apply and easy to use.  相似文献   

12.

Dividing a metal nanoparticle into smaller components and the occurrence of the plasmonic phenomenon in the gap between these components can improve the sensitivity of the detector to variation of the refraction coefficient of liquid. In this paper, in a constant volume of metal, a golden disk is divided into two rings and one smaller disk. With a proper arrangement of these components, the surface plasmon resonance phenomenon takes place at the wavelength of 945.7 nm. The occurrence of this phenomenon increases the field in the distance between nanoparticles surrounded by liquid. The sensitivity of the detector that designed using nanodisks is 300 nm/RIU while it increases to 500 nm/RIU for the new structure. The increase of LSPR displacement, for a variation of 0.01 in the liquid refraction coefficient, from 3 nm for a disk to 5 nm for a proposed structure verifies a 67% improvement in the sensitivity of the sensor.

  相似文献   

13.
Plasmonics - A highly sensitive pressure sensor operating over a wide pressure range based on two-dimensional photonic crystals having a Mach-Zehnder interferometer structure has been developed....  相似文献   

14.
Du  Chao  Wang  Qi  Hu  Haifeng  Zhao  Yong 《Plasmonics (Norwell, Mass.)》2017,12(6):1961-1965
Plasmonics - A highly sensitive refractive index (RI) sensor based on four-hole grapefruit fiber with surface plasmon resonance (SPR) has been proposed and theoretically investigated. By coating...  相似文献   

15.
Plasmonics - Metal–Insulator-Metal (MIM) structures possess a number of shortcomings which include optical loss, tenability, nanofabrication challenges, chemical instability, incompatible...  相似文献   

16.
Zhu  Meijun  Yang  Lin  Lv  Jingwei  Liu  Chao  Li  Qiao  Peng  Chao  Li  Xianli  Chu  Paul K. 《Plasmonics (Norwell, Mass.)》2022,17(2):543-550
Plasmonics - A highly sensitive surface plasmon resonance (SPR) sensor comprising a dual-core photonic crystal fiber (PCF) is designed to detect minute changes in analyte refractive indices (RIs)...  相似文献   

17.
Gu  Sanfeng  Sun  Wei  Li  Meng  Zhang  Tianheng  Deng  Ming 《Plasmonics (Norwell, Mass.)》2022,17(3):1129-1137

A dual-core and dual D-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor with silver and aluminum nitride (AlN) films is designed. The distribution characteristics of the electromagnetic fields of core and plasmon modes, as well as the sensing properties, are numerically studied by finite element method (FEM). The structure parameters of the designed sensor are optimized by the optical loss spectrum. The results show the resonance wavelength variation of 489 nm for the refractive index (RI) range of 1.36?~?1.42. In addition, a maximum wavelength sensitivity of 13,400 nm/RIU with the corresponding RI resolution of 7.46?×?10?6 RIU is obtained in the RI range of 1.41?~?1.42. The proposed sensor with the merits of high sensitivity, low cost, and simple structure has a wide application in the fields of RI sensing, such as hazardous gas detection, environmental monitoring, and biochemical analysis.

  相似文献   

18.
Plasmonics - In this research work, a novel highly sensitive refractive index sensor using Au and Ag elliptic-shaped nanoparticles are proposed. The main idea of this work is using an original...  相似文献   

19.
We investigate the optical spectrum of a multilayer metallic slab using multiple-scattering formalism. A thin silver film is attached to a periodic array of heterodimers consisting of two vertically spaced silver nanoparticles of different radii. Depending on the radius of nanoparticles, heterodimer array presents a simple nanoscale geometry which gives rise to remarkable plasmonic properties of multipolar resonances. Due to the coherent interference of the localized nanoparticle plasmons (discrete mode) and surface plasmon polaritons of metallic film (continuous mode), the reflection spectrum represents a sharp asymmetric Fano resonance dip, which is strongly sensitive to the refractive index of the surrounding embedded dielectric host. The physical features contribute to a highly efficient plasmonic sensor for refractive index sensing with sensitivity of ~1.5?×?10?3 RIU/nm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号