共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Olof Lagerlöf 《Journal of bioenergetics and biomembranes》2018,50(3):241-261
Hundreds of proteins in the nervous system are modified by the monosaccharide O-GlcNAc. A single protein is often O-GlcNAcylated on several amino acids and the modification of a single site can play a crucial role for the function of the protein. Despite its complexity, only two enzymes add and remove O-GlcNAc from proteins, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Global and local regulation of these enzymes make it possible for O-GlcNAc to coordinate multiple cellular functions at the same time as regulating specific pathways independently from each other. If O-GlcNAcylation is disrupted, metabolic disorder or intellectual disability may ensue, depending on what neurons are affected. O-GlcNAc's promise as a clinical target for developing drugs against neurodegenerative diseases has been recognized for many years. Recent literature puts O-GlcNAc in the forefront among mechanisms that can help us better understand how neuronal circuits integrate diverse incoming stimuli such as fluctuations in nutrient supply, metabolic hormones, neuronal activity and cellular stress. Here the functions of O-GlcNAc in the nervous system are reviewed. 相似文献
5.
Summary Histochemical studies of normal adult rat brain indicate two types of glycosaminoglycans in the subependymal region of the lateral ventricle. One network is characterized by an affinity for the cationic dyes alcian blue, aldehyde fuchsin and colloidal iron. These reactions occur at pH 1.0 and at 0.5–0.3 M concentration of MgCl2, which suggests that this material is chondroitin sulfate. The other system is identified by metachromasia with toluidine blue and a loss of PAS staining following sulfation. These findings are consistent with non-sulfated and non-anionic acid mucopolysaccharides. In developing rat brain the differential development of these networks enhances their separate identity. The metachromatic network is present at least by the 10th postnatal day but the polyanionic electrolytes cannot be identified until the 16th to the 22nd days. The possible functional importance of these systems is discussed. 相似文献
6.
M. V. Ugryumov 《Russian Journal of Developmental Biology》2009,40(1):14-22
The main prerequisite for organism’s viability is the maintenance of the internal environment despite changes in the external environment, which is provided by the neuroendocrine control system. The key unit in this system is hypothalamus exerting endocrine effects on certain peripheral organs and anterior pituitary. Physiologically active substances of neuronal origin enter blood vessels in the neurohemal parts of hypothalamus where no blood-brain barrier exists. In other parts of the adult brain, the arrival of physiologically active substances is blocked by the blood-brain barrier. According to the generally accepted concept, the neuroendocrine system formation in ontogeny starts with the maturation of peripheral endocrine glands, which initially function autonomously and then are controlled by the anterior pituitary. The brain is engaged in neuroendocrine control after its maturation completes, which results in a closed control system typical of adult mammals. Since neurons start to secrete physiologically active substances soon after their formation and long before interneuronal connections are formed, these cells are thought to have an effect on brain development as inducers. Considering that there is no blood-brain barrier during this period, we proposed the hypothesis that the developing brain functions as a multipotent endocrine organ. This means that tens of physiologically active substances arrive from the brain to the systemic circulation and have an endocrine effect on the whole body development. Dopamine, serotonin, and gonadotropin-releasing hormone were selected as marker physiologically active substances of cerebral origin to test this hypothesis. In adult animals, they act as neurotransmitters or neuromodulators transmitting information from neuron to neuron as well as neurohormones arriving from the hypothalamus with portal blood to the anterior pituitary. Perinatal rats—before the blood-brain barrier is formed—proved to have equally high concentration of dopamine, serotonin, and gonadotropin-releasing hormone in the systemic circulation as in the adult portal system. After the brain-blood barrier is formed, the blood concentration of dopamine and gonadotropin-releasing hormone drops to zero, which indirectly confirms their cerebral origin. Moreover, the decrease in the blood concentration of dopamine, serotonin, and gonadotropin-releasing hormone before the brain-blood barrier formation after the microsurgical disruption of neurons that synthesize them or inhibition of dopamine and serotonin synthesis in the brain directly confirm their cerebral origin. Before the blood-brain barrier formation, dopamine, serotonin, gonadotropin-releasing hormone, and likely many other physiologically active substances of cerebral origin can have endocrine effects on peripheral target organs—anterior pituitary, gonads, kidney, heart, blood vessels, and the proper brain. Although the period of brain functioning as an endocrine organ is not long, it is crucial for the body development since physiologically active substances exert irreversible effects on the targets as morphogenetic factors during this period. Thus, the developing brain from the neuron formation to the establishment of the blood-brain barrier functions as a multipotent endocrine organ participating in endocrine control of the whole body development. 相似文献
7.
Choroid plexus recovery after transient forebrain ischemia: role of growth factors and other repair mechanisms 总被引:3,自引:0,他引:3
Johanson CE Palm DE Primiano MJ McMillan PN Chan P Knuckey NW Stopa EG 《Cellular and molecular neurobiology》2000,20(2):197-216
1. Transient forebrain ischemia in adult rats, induced by 10 min of bilateral carotid occlusion and an arterial hypotension of 40 mmHg, caused substantial damage not only to CA-1 neurons in hippocampus but also to epithelial cells in lateral ventricle choroid plexus.2. When transient forebrain ischemia was followed by reperfusion (recovery) intervals of 0 to 12 hr, there was moderate to severe damage to many frond regions of the choroidal epithelium. In some areas, epithelial debris was sloughed into cerebrospinal fluid (CSF). Although some epithelial cells were disrupted and necrotic, their neighbors exhibited normal morphology. This patchy response to ischemia was probably due to regional differences in reperfusion or cellular metabolism.3. Between 12 and 24 hr postischemia, there was marked restoration of the Na+, K+, water content, and ultrastructure of the choroid plexus epithelium. Since there was no microscopical evidence for mitosis, we postulate that healthy epithelial cells either were compressed together on the villus or migrated from the choroid plexus stalk to more distal regions, in order to fill in gaps along the basal lamina caused by necrotic epithelial cell disintegration.4. Epithelial cells of mammalian choroid plexus synthesize and secrete many growth factors and other peptides that are of trophic benefit following injury to regions of the cerebroventricular system. For example, several growth factors are upregulated in choroid plexus after ischemic and traumatic insults to the central nervous system.5. The presence of numerous types of growth factor receptors in choroid plexus allows growth factor mediation of recovery processes by autocrine and paracrine mechanisms.6. The capability of choroid plexus after acute ischemia to recover its barrier and CSF formation functions is an important factor in stabilizing brain fluid balance.7. Moreover, growth factors secreted by choroid plexus into CSF are distributed by diffusion and convection into brain tissue near the ventricular system, e.g., hippocampus. By this endocrine-like mechanism, growth factors are conveyed throughout the choroid plexus–CSF–brain nexus and can consequently promote repair of ischemia-damaged tissue in the ventricular wall and underlying brain. 相似文献
8.
Histochemical studies of normal adult rat brain indicate two types of glycosaminoglycans in the subependymal region of the lateral ventricle. One network is characterized by an affinity for the cationic dyes alcian blue, aldehyde fuchsin and colloidal iron. These reactions occur at pH 1.0 and at 0.5-0.3 M concentration of MgCl2, which suggests that this material is chondroitin sulfate. The other system is identified by metachromasia with toluidine blue and a loss of PAS staining following sulfation. These findings are consistent with non-sulfated and non-anionic acid mucopolysaccharides. In developing rat brain the differential development of these networks enhances their separate identity. The metachromatic network is present at least by the 10th postnatal day but the polyanionic electrolytes cannot be identified until the 16th to the 22nd days. The possible functional importance of these systems is discussed. 相似文献
9.
Neutral and acidic glycopeptides in adult and developing rat brain 总被引:11,自引:0,他引:11
10.
Mitochondria and ischemic reperfusion damage in the adult and in the developing brain 总被引:16,自引:0,他引:16
Blomgren K Zhu C Hallin U Hagberg H 《Biochemical and biophysical research communications》2003,304(3):551-559
The developing and the adult brain respond in similar ways to ischemia, but also display clear differences. For example, the relative contributions of necrosis and apoptosis to neuronal death may be different, such that apoptotic mechanisms would be more prevalent in the developing brain. During normal development, more than half of the neurons in some brain regions are removed through apoptosis, and effectors like caspase-3 are highly upregulated in the immature brain. Mitochondria are pivotal regulators of cell death through their role in energy production and calcium homeostasis, their capacity to release apoptogenic proteins and to produce reactive oxygen species. This review will summarize some of the current studies dealing with mitochondria-related mechanisms of ischemic brain damage, with special reference to developmental aspects. 相似文献
11.
The transient receptor potential (TRP) superfamily comprises of a group of non-selective cation channels that have been implicated in both receptor and store-operated channel functions. The family of classical TRPs (TRPCs) consists of seven members (TRPC1-7), with TRPC4 possibly playing a role in neuronal signaling. We have examined the distribution pattern of TRPC4 mRNA and protein in the developing and postnatal murine brain by using in situ hybridization, Western blotting, and immunocytochemistry. Expression of TRPC4 mRNA starts at embryonic day 14.5 (E14.5) in the developing septal area and cerebellar anlagen. At E16.5, prominent expression is additionally seen in the hippocampal formation and cortical plate. High densities of cells expressing TRPC4 mRNA occur in the adult olfactory bulb and hippocampus, whereas the cortex and septum display lower densities of cells positive for TRPC4 mRNA. Analysis of the adult hippocampal formation has revealed TRPC4 immunoreactivity in hippocampal areas CA1 to CA3 and in the dentate gyrus. Functions consistent with this spatially restricted pattern of expression remain to be revealed. 相似文献
12.
Enzymes in intracellular organelles of adult and developing rat brain 总被引:11,自引:0,他引:11
Eighty percent of the hexokinase and about a half of the lactate dehydrogenase, pyruvate kinase, and aldolase activities of adult rat cerebral homogenates is particulate, associated to a large extent, with the sediment (P2) obtained by centrifugation at 17,000g. Centrifugation of P2 into sucrose gradients shows that all four enzymes are associated with synaptosomes: their peak concentration coincides with that of glutamate decarboxylase rather than with those of mitochondrial enzymes, glutamate dehydrogenase, and aspartate aminotransferase. After hypoosmotic shock and high-speed centrifugation considerable portions of synaptosomal enzymes are recovered in the supernatant phase; the composition of this fluid, as indicated by the higher specific activity of several enzymes, is different from that of the soluble fraction of whole homogenates.The concentration of the seven enzymes studied is considerably lower in fetal than in adult brain and, in general, a larger fraction of the total is soluble. Preferential accumulation with age in the particulate fraction is especially striking in the case of hexokinase. Between fetal and adult life there are changes in the enzymic composition as well as increases in the amount of the total protein attributable to the synaptosomal fraction. Glutamate decarboxylase and lactate dehydrogenase are the synaptosomal enzymes to rise first (before or at birth), followed by hexokinase and, in the third postnatal week, by aldolase and pyruvate kinase. The upsurge of mitochondrial enzymes (that of glutamate dehydrogenase at term and of aspartate aminotransferase 10 days later) is accompanied by insignificant or small increases in the total protein content of the same fraction. The results indicate that the maturation of subcellular organelles involves a stepwise enrichment with various enzymes; some signs of biochemical differentiation precede and others coincide with the development of cerebral functions known to occur in 2- to 4-wk-old rats. 相似文献
13.
Virgintino D Errede M Robertson D Capobianco C Girolamo F Vimercati A Bertossi M Roncali L 《Histochemistry and cell biology》2004,122(1):51-59
The formation of endothelial tight junctions (TJs) is crucial in blood-brain barrier (BBB) differentiation, and the expression and targeting of TJ-associated proteins mark the beginning of BBB functions. Using confocal microscopy, this study analyzed endothelial TJs in adult human cerebral cortex and the fetal telencephalon and leptomeninges in order to compare the localization of two TJ-associated transmembrane proteins, occludin and claudin-5. In the arterioles and microvessels of adult brain, occludin and claudin-5 form continuous bands of endothelial immunoreactivity. During fetal development, occludin and claudin-5 immunoreactivity is first detected as a diffuse labeling of endothelial cytoplasm. Later, at 14 weeks, the immunosignal for both proteins shifts from the cytoplasm to the interface of adjacent endothelial cells, forming a linear, widely discontinuous pattern of immunoreactivity that achieves an adult-like appearance within a few weeks. These results demonstrate that occludin and claudin-5 expression is an early event in human brain development, followed shortly by assembly of both proteins at the junctional areas. This incremental process suggests more rapid establishment of the human BBB, consistent with its specific function of creating a suitable environment for neuron differentiation and neurite outgrowth during neocortical histogenesis.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00418-004-0665-1Daniela Virgintino and Mariella Errede contributed equally to this work 相似文献
14.
Cytoglobin is a stress-responsive hemoprotein expressed in the developing and adult brain. 总被引:1,自引:0,他引:1
Pradeep P A Mammen John M Shelton Qiu Ye Shane B Kanatous Amanda J McGrath James A Richardson Daniel J Garry 《The journal of histochemistry and cytochemistry》2006,54(12):1349-1361
Cytoglobin (Cygb) is a novel tissue hemoprotein relatively similar to myoglobin (Mb). Because Cygb shares several structural features with Mb, we hypothesized that Cygb functions in the modulation of oxygen and nitric oxide metabolism or in scavenging free radicals within a cell. In the present study we examined the spatial and temporal expression pattern of Cygb during murine embryogenesis. Using in situ hybridization, RT-PCR, and Northern blot analyses, limited Cygb expression was observed during embryogenesis compared with Mb expression. Cygb expression was primarily restricted to the central nervous system and neural crest derivatives during the latter stages of development. In the adult mouse, Cygb is expressed in distinct regions of the brain as compared with neuroglobin (Ngb), another globin protein, and these regions are responsive to oxidative stress (i.e., hippocampus, thalamus, and hypothalamus). In contrast to Ngb, Cygb expression in the brain is induced in response to chronic hypoxia (10% oxygen). These results support the hypothesis that Cygb is an oxygen-responsive tissue hemoglobin expressed in distinct regions of thenormoxic and hypoxic brain and may play a key role in the response of the brain to ahypoxic insult. 相似文献
15.
16.
17.
Ugriumov MV 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》2004,90(5):625-637
It is suggested that the abult mammals' brain is, on the one hand, a conglomerate of neuronal assemblies within which information is being transmitted with the aid of chemical signals, and on the other hand, a considerable part of the neurons are secreting cells and their accumulations by their functional characteristics are identical to endocrine glands. Proceeding from the brain dualism, a question arises: which of the two functions is the pimary one? It seems that, prior to forming specific interneuronal links and blood-brain barrier, the neurons function as secreting cells and the brain--as an endocrine gland. The physiologically active substances (FASs) entering the general circulation system from the brain seem to take part in regulation of development of the visceral target organs and the brain itself. Forming of the interneuronal links and blood-brain barrier leads to a qualitative jump in the brain development followed by a considerable limitation of its endocrine functions. According to this concept, the brain, prior to the moment of forming of the interneuronal links and blood-brain barrier, does not influence the development of the whole organism whereas development of the brain itself is regulated by the hormones of the foetus and placenta's endocrine glands. 相似文献
18.
19.
Abdominal deposits of a choroid plexus carcinoma in a patient with a ventriculoperitoneal shunt were cytologically diagnosed by examination of ascitic fluid after regression of the primary tumor. The morphology of the malignant cells in ascitic fluid was more similar to that of mesothelial cells than to the appearance of cells from this lesion in cerebrospinal fluid. 相似文献