首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Full field strain measurements of biological tissue during loading are often limited to the quantification of fiduciary marker displacements on the tissue surface. These marker measurements can lack the necessary spatial resolution to characterize non-uniform deformation and may not represent the deformation of the load-bearing collagen microstructure. To overcome these potential limitations, a method was developed to track the deformation of the collagen fiber microstructure in ligament tissue. Using quantitative polarized light imaging, fiber alignment maps incorporating both direction and alignment strength at each pixel were generated during facet capsular ligament loading. A grid of virtual markers was superimposed over the tissue in the alignment maps, and the maximization of a vector correlation calculation between fiber alignment maps was used to track marker displacement. Tracking error was quantified through comparisons to the displacements of excised ligament tissue (n=3); separate studies applied uniaxial tension to isolated facet capsular ligament tissue (n=4) to evaluate tracking capabilities during large tissue deformations. The average difference between virtual marker and tissue displacements was 0.07±0.06 pixels. This error in marker location produced principal strain measurements of 1.2±1.6% when markers were spaced 4 pixels apart. During tensile tissue loading, substantial inhomogeneity was detected in the strain field using vector correlation tracking, and the location of maximum strain differed from that produced by standard tracking techniques using coarser meshes. These findings provide a method to directly measure fiber network strains using quantitative fiber alignment data, enabling a better understanding of structure–function relationships in tissues at different length scales.  相似文献   

2.
When measuring knee kinematics with skin-mounted markers, soft tissue and structures surrounding the knee hide the actual underlying segment kinematics. Soft-tissue artefacts can be reduced when plate-mounted markers or marker trees are used instead of individual unconstrained mounted markers. The purpose of this study was to accurately quantify the soft-tissue artefacts and to compare two marker cluster fixation methods by using fluoroscopy of knee motion after total knee arthroplasty during a step-up task. Ten subjects participated 6 months after their total knee arthroplasty. The patients were randomised into (1) a plate-mounted marker group and (2) a strap-mounted marker group. Fluoroscopic data were collected during a step-up motion. A three-dimensional model fitting technique was used to reconstruct the in vivo 3-D positions of the markers and the implants representing the bones. The measurement errors associated with the thigh were generally larger (maximum translational error: 17mm; maximum rotational error 12 degrees ) than the measurement errors for the lower leg (maximum translational error: 11mm; maximum rotational error 10 degrees ). The strap-mounted group showed significant more translational errors than the plate-mounted group for both the shank (respectively, 3+/-2.2 and 0+/-2.0mm, p = 0.025) and the thigh (2+/-2.0 and 0+/-5.9mm, p = 0.031). The qualitative conclusions based on interpretation of the calculated estimates of effects within the longitudinal mixed-effects modelling evaluation of the data for the two groups (separately) were effectively identical. The soft-tissue artefacts across knee flexion angle could not be distinguished from zero for both groups. For all cases, recorded soft-tissue artefacts were less variable within subjects than between subjects. The large soft-tissue artefacts, when using clustered skin markers, irrespective of the fixation method, question the usefulness of parameters found with external movement registration and clinical interpretation of stair data in small patient groups.  相似文献   

3.
Sacral marker and pelvis reconstruction methods have been proposed to approximate total body center of mass during relatively low intensity gait and hopping tasks, but not during a maximum effort vertical jumping task. In this study, center of mass displacement was calculated using the pelvic kinematic method and compared with center of mass displacement using the ground-reaction force-impulse method, in experienced athletes (n = 13) performing restricted countermovement vertical jumps. Maximal vertical jumps were performed in a biomechanics laboratory, with data collected using an 8-camera motion analysis system and two force platforms. The pelvis center of mass was reconstructed from retro-reflective markers placed on the pelvis. Jump height was determined from the peak height of the pelvis center of mass minus the standing height. Strong linear relationships were observed between the pelvic kinematic and impulse methods (R2 = .86; p < .01). The pelvic kinematic method underestimated jump height versus the impulse method, however, the difference was small (CV = 4.34%). This investigation demonstrates concurrent validity for the pelvic kinematic method to determine vertical jump height.  相似文献   

4.
Pedigree data can be evaluated, and subsequently corrected, by analysis of the distribution of genetic markers, taking account of the possibility of mistyping . Using a model of pedigree error developed previously, we obtained the maximum likelihood estimates of error parameters in pedigree data from Tokelau. Posterior probabilities for the possible true relationships in each family are conditional on the putative relationships and the marker data are calculated using the parameter estimates. These probabilities are used as a basis for discriminating between pedigree error and genetic marker errors in families where inconsistencies have been observed. When applied to the Tokelau data and compared with the results of retyping inconsistent families, these statistical procedures are able to discriminate between pedigree and marker error, with approximately 90% accuracy, for families with two or more offspring. The large proportion of inconsistencies inferred to be due to marker error (61%) indicates the importance of discriminating between error sources when judging the reliability of putative relationship data. Application of our model of pedigree error has proved to be an efficient way of determining and subsequently correcting sources of error in extensive pedigree data collected in large surveys.  相似文献   

5.
Oxidative stress, which results from an imbalance between the production of potentially damaging reactive oxygen species versus antioxidant defenses and repair mechanisms, has been proposed as an important mediator of life‐history trade‐offs. A plethora of biomarkers associated with oxidative stress exist, but few ecological studies have examined the relationships among different markers in organisms experiencing natural conditions or tested whether those relationships are stable across different environments and demographic groups. It is therefore not clear to what extent studies of different markers can be compared, or whether studies that focus on a single marker can draw general conclusions regarding oxidative stress. We measured widely used markers of oxidative damage (protein carbonyls and malondialdehyde) and antioxidant defense (superoxide dismutase and total antioxidant capacity) from 706 plasma samples collected over a 4‐year period in a wild population of Soay sheep on St Kilda. We quantified the correlation structure among these four markers across the entire sample set and also within separate years, age groups (lambs and adults), and sexes. We found some moderately strong correlations between some pairs of markers when data from all 4 years were pooled. However, these correlations were caused by considerable among‐year variation in mean marker values; correlation coefficients were small and not significantly different from zero after accounting for among‐year variation. Furthermore, within each year, age, and sex subgroup, the pairwise correlation coefficients among the four markers were weak, nonsignificant, and distributed around zero. In addition, principal component analysis confirmed that the four markers represented four independent axes of variation. Our results suggest that plasma markers of oxidative stress may vary dramatically among years, presumably due to environmental conditions, and that this variation can induce population‐level correlations among markers even in the absence of any correlations within contemporaneous subgroups. The absence of any consistent correlations within years or demographic subgroups implies that care must be taken when generalizing from observed relationships with oxidative stress markers, as each marker may reflect different and potentially uncoupled biochemical processes.  相似文献   

6.
This paper describes the development of a novel algorithm for deriving finger segmental center of rotation (COR) locations during flexion-extension from measured surface marker motions in vivo. The algorithm employs an optimization routine minimizing the time-variance of the internal link lengths, and incorporates an empirically quantifiable relationship between the local movement of a surface marker around a joint (termed "surface marker excursion") and the joint flexion-extension. The latter relationship constrains and simplifies the optimization routine to make it computationally tractable. To empirically investigate this relationship and test the proposed algorithm, an experiment was conducted, in which hand cylinder-grasping movements were performed by 24 subjects (12 males and 12 females). Spherical retro-reflective markers were placed at various surface landmarks on the dorsal aspect of each subject's right (grasping) hand, and were measured during the movements by an opto-electronic system. Analysis of experimental data revealed a highly linear relationship between the "surface marker excursion" and the marker-defined flexion-extension angle: the average R(2) in linear regression ranged from 0.89 to 0.97. The algorithm successfully determined the CORs of the distal interphalangeal, proximal interphalangeal, and metacarpophalangeal joints of digits 2-5 during measured motions. The derived CORs appeared plausible as examined in terms of the physical locations relative to surface marker trajectories and the congruency across different joints and individuals.  相似文献   

7.
Barefoot running kinematics has been described to vary considerably from shod running. However, previous investigations were typically based on externally mounted shoe and/or skin markers, which have been shown to overestimate skeletal movements. Thus, the purpose of this study was to compare calcaneal and tibial movements of barefoot versus shod running using skeletal markers. Intracortical bone pins with reflective marker triads were inserted under standard local anesthetic into the calcaneus and tibia of five healthy male subjects. The subjects ran barefoot, with a normal shoe, with three shoe soles and two orthotic modifications. The three-dimensional tibiocalcaneal rotations were determined using a joint coordinate system approach. Test variables were defined for eversion and tibial rotation. The results showed that the differences in bone movements between barefoot and shod running were small and unsystematic (mean effects being less than 2 degrees ) compared with the differences between the subjects (up to 10 degrees ). However, differences may occur during midstance when extreme shoe modifications (i.e. posterior orthosis) are used. It is concluded that calcaneal and tibial movement patterns do not differ substantially between barefoot and shod running, and that the effects of these interventions are subject specific. The result of this in vivo study contrasts with previous investigations using skin and shoe mounted markers and suggests that these discrepancies may be the result of the overestimation with externally mounted markers.  相似文献   

8.
Elizabeth Weiss 《HOMO》2010,61(1):48-58
Most muscle marker research consists of post-cranial analyses, but some researchers examine crania to reconstruct activities. Regardless of bones examined, anthropologists know of some of the complexities surrounding muscle marker development. Here, posterior cranial muscle markers are analyzed to determine whether they are useful in reconstructing activities by examining effects that may hinder reconstructions. Additionally, upper limb muscle markers and humeral cross-sectional robusticity variables are correlated with cranial muscle markers to determine if robust individuals are generally robust due to the synergistic effects of muscle use.Cranial muscle markers of 65 prehistoric California Amerinds are scored using a five-point observer rating scale. Body mass is calculated from femoral head size; maximum cranial length and breadth are measured with a spreading caliper; and age and sex are determined through standard procedures. Upper limb muscle markers are scored on seven sites using two dimensions within a seven-point scale. Cross-sectional properties are calculated from biplanar humeral radiographs. Aggregates are created for cranial muscle markers, upper limb muscle markers, and cross-sectional robusticity.Cranial muscle markers correlate significantly with cranial length, r=0.25 and cross-sectional robusticity of humerus, r=0.29; P’s<0.05. All variables differed between sexes (Mann-Whitney=31.00-307.50, P’s<0.01). Results imply that some differences in cranial muscle markers are related to size; however, individuals with well-developed cranial muscle markers have greater upper limb robusticity possibly due to activity patterns. Sex differences remained after size controls and may relate to activity differences.  相似文献   

9.
A primary source of measurement error in gait analysis is soft-tissue artefact. Hip and knee angle measurements, regularly used in clinical decision-making, are particularly prone to pervasive soft tissue on the femur. However, despite several studies of thigh marker artefact it remains unclear how lateral thigh marker height affects results using variants of the Conventional Gait Model. We compared Vicon Plug-in Gait hip and knee angle estimates during gait using a proximal and distal thigh marker placement for ten healthy subjects. Knee axes were estimated by optimizing thigh rotation offsets to minimize knee varus-valgus range during gait. Relative to the distal marker, the proximal marker produced 37% less varus-valgus range and 50% less hip rotation range (p < 0.001), suggesting that it produced less soft-tissue artefact in knee axis estimates. The thigh markers also produced different secondary effects on the knee centre estimate. Using whole gait cycle optimization, the distal marker showed greater minimum and maximum knee flexion (by 6° and 2° respectively) resulting in a 4° reduction in range. Mid-stance optimization reduced distal marker knee flexion by 5° throughout, but proximal marker results were negligibly affected. Based on an analysis of the Plug-in Gait knee axis definition, we show that the proximal marker reduced sensitivity to soft-tissue artefact by decreasing collinearity between the points defining the femoral frontal plane and reducing anteroposterior movement between the knee and thigh markers. This study suggests that a proximal thigh marker may be preferable when performing gait analysis using the Plug-in Gait model.  相似文献   

10.
利用RAPD和ISSR标记分析烤烟品种间遗传关系   总被引:6,自引:0,他引:6  
利用RAPD和ISSR标记对22份烤烟(Nicotiana tabacumL.)品种进行了遗传关系研究。在RAPD分析中筛选到13个引物,共扩增出167条带,其中多态性带50条,多态性比率为29.9%;在ISSR分析中筛选出7个引物,共扩增出96条带,其中多态性带44条,多态性比率为45.8%。两种标记相结合估算出的品种间遗传相似系数在0.881~0.979之间,平均为0.933。单独基于RAPD标记和ISSR标记的聚类结果有一定差异;两种标记结合起来的聚类分析结果与系谱信息吻合程度更高。定向选择可能对烤烟品种间遗传关系有较大影响;国外引进品种与国内育成品种并未完全分开,表明分子水平的遗传关系和地理来源间缺乏必然联系。  相似文献   

11.
利用两个测序水稻品种构建微卫星连锁图谱   总被引:6,自引:0,他引:6  
利用已完成基因组测序的两个水稻品种日本晴和931l的数据库成功开发出水稻微卫星新标记,并利用由90个单株组成的日本晴×9311 F2作图群体,构建了一张包含152个SSR标记位点、覆盖基因组总长度2 455.7 cM的连锁图谱,有46个SSR新标记为自主开发,该图谱标记间的平均遗传距离为16.16 cM;并将未能在Temnykh等人(2001)构建的图谱上定位的微卫星标记RM345和RM494定位在第6染色体上.通过与Temnykh等人(2001)和兰涛等人(2003)所构建的图谱从作图群体的类型和大小、标记的类型和数量、标记在染色体上的线性排列顺序等几个方面进行比较,所绘制的图谱其标记在染色体线性排列上与Temnykh等人绘制的图谱具有很高的一致性,达93.81%.  相似文献   

12.
Restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers are being used widely for evaluating genetic relationships of crop germplasm. Differences in the properties of these two markers could result in different estimates of genetic relationships among some accessions. Nuclear RFLP markers detected by genomic DNA and cDNA clones and RAPD markers were compared for evaluating genetic relationships among 18 accessions from six cultivated Brassica species and one accession from Raphanus sativus. Based on comparisons of genetic-similarity matrices and cophenetic values, RAPD markers were very similar to RFLP markers for estimating intraspecific genetic relationships; however, the two marker types gave different results for interspecific genetic relationships. The presence of amplified mitochondrial and chloroplast DNA fragments in the RAPD data set did not appear to account for differences in RAPD- and RFLP-based dendrograms. However, hybridization tests of RAPD fragments with similar molecular weights demonstrated that some fragments, scored as identical, were not homologous. In all these cases, the differences occurred at the interspecific level. Our results suggest that RAPD data may be less reliable than RFLP data when estimating genetic relationships of accessions from more than one species.  相似文献   

13.
Under additive inheritance, the Henderson mixed model equations (HMME) provide an efficient approach to obtaining genetic evaluations by marker assisted best linear unbiased prediction (MABLUP) given pedigree relationships, trait and marker data. For large pedigrees with many missing markers, however, it is not feasible to calculate the exact gametic variance covariance matrix required to construct HMME. The objective of this study was to investigate the consequences of using approximate gametic variance covariance matrices on response to selection by MABLUP. Two methods were used to generate approximate variance covariance matrices. The first method (Method A) completely discards the marker information for individuals with an unknown linkage phase between two flanking markers. The second method (Method B) makes use of the marker information at only the most polymorphic marker locus for individuals with an unknown linkage phase. Data sets were simulated with and without missing marker data for flanking markers with 2, 4, 6, 8 or 12 alleles. Several missing marker data patterns were considered. The genetic variability explained by marked quantitative trait loci (MQTL) was modeled with one or two MQTL of equal effect. Response to selection by MABLUP using Method A or Method B were compared with that obtained by MABLUP using the exact genetic variance covariance matrix, which was estimated using 15 000 samples from the conditional distribution of genotypic values given the observed marker data. For the simulated conditions, the superiority of MABLUP over BLUP based only on pedigree relationships and trait data varied between 0.1% and 13.5% for Method A, between 1.7% and 23.8% for Method B, and between 7.6% and 28.9% for the exact method. The relative performance of the methods under investigation was not affected by the number of MQTL in the model.  相似文献   

14.
Molecular marker-quantitative trait associations are important for breeders to recognize and understand to allow application in selection. This work was done to provide simple, intuitive explanations of trait-marker regression for large samples from an F2 and to examine the properties of the regression estimators. Beginning with a(- 1,0,1) coding of marker classes and expected frequencies in the F2, expected values, variances, and covariances of marker variables were calculated. Simple linear regression and regression of trait values on two markers were computed. The sum of coefficient estimates for the flanking-marker regression is asymptotically unbiased for an included additive effect with complete interference, and is only slightly biased with no interference and moderately close (15 cM) marker spacing. The variance of the sum of regression coefficients is much more stable for small recombination distances than variances of individual coefficients. Multiple regression of trait variables on coded marker variables can be interpreted as the product of the inverse of the marker correlation matrix R and the vector a of simple linear regression estimators for each marker. For no interference, elements of the correlation matrix R can be written as products of correlations between adjacent markers. The inverse of R is displayed and used to illustrate the solution vector. Only markers immediately flanking trait loci are expected to have non-zero values and, with at least two marker loci between each trait locus, the solution vector is expected to be the sum of solutions for each trait locus. Results of this work should allow breeders to test for intervals in which trait loci are located and to better interpret results of the trait-marker regression.  相似文献   

15.
Image distortion due to a non-perpendicular camera view introduces serious errors in tendon and ligament strain measurements when data are recorded using a single camera. These errors can be corrected with the oblique scaling algorithm using two pairs of scaling markers attached to the tendon surface. Computer simulations show that application of this algorithm reduces errors over 100 times to less than 0.06%. The method is relatively insensitive to measurement errors in the scaling marker distance but sensitive to the accuracy of alignment of the scaling markers. It can be concluded that the oblique scaling algorithm eliminates the influences of a non-perpendicular camera view in single-camera tendon and ligament strain measurements.  相似文献   

16.
Kuo LC  Su FC  Chiu HY  Yu CY 《Journal of biomechanics》2002,35(11):1499-1506
While several different methods have been used to measure hand kinematics, fluoroscopy is generally considered to be the most accurate. Recently, video-based motion analysis has been developed for the measurement of joint kinematics. This method is versatile, easy to use, and can measure motions dynamically. Surface markers are most commonly used in the video-based motion systems. However, whether the surface markers placed on the thumb accurately represent the true kinematics of the underlying bony segment is questionable.In this study, the feasibility of surface markers to represent thumb kinematics was investigated by fluoroscopy. Both the positions of surface markers and bony landmarks were simultaneous recorded and then digitized. The Ra(2) values comparing the angular changes of the thumb interphalangeal, metacarpal and carpometacarpal joints derived using the surface markers or bony landmarks were 0.9986, 0.9730 and 0.9186 in the flexion/extension plane respectively, 0.8837, 0.9697 and 0.8775 in the abduction/adduction plane; and 0.9884, 0.9643 and 0.9431 in the opposition plane. The ranges, mean and standard deviation of the absolute differences between calculated angles of different marker sets were also compared. These data revealed that the similarities of the two different marker techniques throughout the motion cycle were high. The differences between the two methods were also within clinically allowable range of +/-5 degrees. It is concluded that the application of the video-based motion analysis system with surface markers to thumb kinematics is warranted.  相似文献   

17.
Random-amplified polymorphic DNA (RAPD) and microsatellite markers were used to estimate the genetic relationships among 37 Ontario corn hybrids. Almost all (95%) of the 160 RAPD fragments and all of the 79 microsatellite alleles were polymorphic across the 37 hybrids. Similarity values among the hybrids ranged from 31% to 86% when based on the RAPD data. The similarities based on microsatellite markers ranged from 12% to 77%. The genetic diversity revealed by microsatellite marker analysis was higher than that obtained from RAPD analysis. The similarity matrices for the microsatellite data and the RAPD data were moderately correlated (0.43). Cluster analyses based on either type of marker showed that most of the hybrids from the same company were closely related to each other. Both dendrograms clustered similar pairs or groups of hybrids. A principal component analysis, based on the combined RAPD and microsatellite data, yielded a good separation of the hybrids with Ontario Corn Heat Unit (OCHU) values <2800 from those with OCHU values >2800. Seventeen RAPD markers and 5 microsatellite markers were significantly associated with the OCHU ratings of the hybrids.  相似文献   

18.
Eight male collegiate weightlifters (age: 21.2 +/- 0.9 years; height: 177.6 +/- 2.3 cm; and body mass: 85.1 +/- 3.3 kg) participated in this study to compare isometric to dynamic force-time dependent variables. Subjects performed the isometric and dynamic mid-thigh clean pulls at 30-120% of their one repetition maximum (1RM) power clean (118.4 +/- 5.5 kg) on a 61 x 121.9-cm AMTI forceplate. Variables such as peak force (PF) and peak rate of force development (PRFD) were calculated and were compared between isometric and dynamic conditions. The relationships between force-time dependent variables and vertical jump performances also were examined. The data indicate that the isometric PF had no significant correlations with the dynamic PF against light loads. On the one hand, there was a general trend toward stronger relationships between the isometric and dynamic PF as the external load increased for dynamic muscle actions. On the other hand, the isometric and dynamic PRFD had no significant correlations regardless of the external load used for dynamic testing. In addition, the isometric PF and dynamic PRFD were shown to be strongly correlated with vertical jump performances, whereas the isometric PRFD and dynamic PF had no significant correlations with vertical jump performances. In conclusion, it appears that the isometric and dynamic measures of force-time curve characteristics represent relatively specific qualities, especially when dynamic testing involves small external loads. Additionally, the results suggest that athletes who possess greater isometric maximum strength and dynamic explosive strength tend to be able to jump higher.  相似文献   

19.
The geometrical, conformational, and electronic properties of a series of D–π–A metal-free dyes designed for use as sensitizers in DSSCs were studied using DFT and TD-DFT methods. A substituted triphenylamine moiety was used as the donor group and 2-cyanoacrylic acid as the acceptor group in these dyes. They also contained conjugated bridging π-linker groups containing two or more thiophene rings to enhance the intramolecular charge transfer. The B3LYP, M06-HF, ωB97XD and CAM-B3LYP functionals were utilized in combination with the 6-31G(d,p) basis set for the calculations. The dye solvation process was taken into account via the polarizable continuum model. To rationalize the relationships between dye structure and the photochemical properties of the dyes when used as sensitizers in DSSCs, the vertical excitation energies, the light-harvesting efficiencies, the free-energy changes during the process of injecting an electron into the surface of a TiO2 nanocrystalline semiconductor, and the open-circuit potentials were calculated for all of the dyes in the solvent THF using the above methods. The results of these computations are discussed and compared with the available corresponding experimental data.  相似文献   

20.
本研究旨在通过Akita小鼠糖尿病模型及糖尿病人群血浆样本,探讨病原体相关性分子细菌脂多糖(lipopolysaccharide,LPS)在糖尿病视网膜病变中的重要作用。本研究选择6个月糖尿病病程的Akita小鼠(Ins2+/Akita)及其同年龄组野生型(wild type,WT)小鼠(C57BL/6J)尾静脉内注射脂多糖(LPS)或生理盐水对照共7 d,从影像学、电生理及病理学水平评估糖尿病视网膜眼病进展。最后收集糖尿病视网膜眼病患者及对照人群血标本,通过ELISA测定血浆LPS表达水平。通过光学相干断层扫描技术分析,发现Akita小鼠的视网膜层间厚度较WT小鼠组相比明显变薄(p=0.000 2),LPS处理进一步加重糖尿病小鼠视网膜结构损害(p=0.000 7)。视网膜电图检测发现LPS处理Akita小鼠组的视网膜细胞幅值较生理盐水处理Akita小鼠显著减慢,有统计学意义(p<0.05)。胰酶消化法分离及PAS染色小鼠眼球视网膜微血管网后,计数测得LPS处理显著增加了Akita小鼠视网膜中无细胞毛细血管数量(p=0.002 6),提示LPS在糖尿病微血管损伤中的重要作用。为保证该研究的临床转化性,我们进一步检测了糖尿病视网膜病变患者(n=19)、糖尿病患者(无微血管并发症)(n=23)及健康对照组(n=20)的血浆LPS水平,发现糖尿病患者血浆LPS水平较健康对照组显著升高(p=0.002 3),其中糖尿病视网膜病变患者LPS升高最为显著(p<0.000 1)。本研究表明,循环中细菌脂多糖增加在糖尿病视网膜病变进展中起到重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号