首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
EWS fli-1 antisense nanocapsules inhibits ewing sarcoma-related tumor in mice   总被引:11,自引:0,他引:11  
EWS Fli-1, a fusion gene resulting from a t(11;22) translocation is found in 90% of both Ewing's sarcoma and primitive neuroectodermal tumor (PNET). In the present study, we show that recently developed polyisobutylcyanoacrylate nanocapsules with an aqueous core were able to encapsulate efficiently high amounts of phosphorothioate oligonucleotides (ODN) directed against EWS Fli-1 chimeric RNA. Release of these ODN in serum medium was shown to be biphasic which was explained by the presence of two types of nanocapsules able to release ODN with different kinetics. In addition, nanocapsules were found to provide protection of these oligonucleotides from the degradation in serum. These ODN nanocapsules permitted to obtain inhibition of Ewing sarcoma-related tumor in mice after intratumoral injection of a cumulative dose as low as 14.4 nanomoles. This new type of non viral vector shows great potential for in vivo administration of oligonucleotides.  相似文献   

3.
Improved targeting of miRNA with antisense oligonucleotides   总被引:9,自引:1,他引:9       下载免费PDF全文
  相似文献   

4.
Tumor angiogenesis is mainly mediated by vascular endothelial growth factor (VEGF), a pro-angiogenic factor produced by cancer cells and active on the endothelium through the VEGF receptor 2 (VEGFR-2). Here we identify a G-rich sequence within the proximal promoter region of vegfr-2, able to form an antiparallel G-quadruplex (G4) structure. This G4 structure can be efficiently stabilized by small molecules with the consequent inhibition of vegfr-2 expression. Functionally, the G4-mediated reduction of VEGFR-2 protein causes a switching off of signaling components that, converging on actin cytoskeleton, regulate the cellular events leading to endothelial cell proliferation, migration and differentiation. As a result of endothelial cell function impairment, angiogenic process is strongly inhibited by G4 ligands both in vitro and in vivo. Interestingly, the G4-mediated antiangiogenic effect seems to recapitulate that observed by using a specific interference RNA against vegfr-2, and it is strongly antagonized by overexpressing the vegfr-2 gene. In conclusion, we describe the evidence for the existence of G4 in the promoter of vegfr-2, whose expression and function can be markedly inhibited by G4 ligands, thereby revealing a new, and so far undescribed, way to block VEGFR-2 as target for anticancer therapy.  相似文献   

5.
Peptide nucleic acids (PNAs) are synthetic polynucleobases that bind to DNA and RNA with high affinity and specificity and with poor membrane permeability. Although PNAs have an enormous potential as antisense agents, the success of antisense PNA applications will require efficient cellular uptake. In this study, a unique antisense 14-mer anti-inducible nitric oxide synthase (iNOS) was encapsulated into erythrocytes (RBC) by hypotonic dialysis. RBC loaded with PNA (10.5 +/- 3.5 micromol/mL RBC) were targeted specifically to murine macrophages, taking advantage of an in vitro opsonization induced by ZnCl(2) and bis-sulfosuccynimidil-suberate (BS(3)). This in vitro opsonization enhanced the phagocytosis of loaded RBC and the delivery of PNA into macrophages (0.72 pmol/10(6) macrophages). The efficacy of this delivery system is demonstrated by decreases in NO production and iNOS protein expression inside the macrophage. Therefore, we can suggest this novel approach for biomedical application.  相似文献   

6.
Intratumor host cells of methylcholanthrene-induced fibrosarcoma(s) were shown to enhance the in vivo outgrowth of syngeneic homologous tumors (MCIA, Mc2A, Mc2B) but not two heterologous T-lymphomas (EL4 and TLX9) in the Winn adoptive transfer assay. This enhancing activity was not restricted only to the latent period of tumor growth but was also observed during the period of active in vivo tumor proliferation. Tumor enhancement was mediated by a population of cells adherent to nylon wool and glass and insensitive to irradiation (with 850 rads) or to treatment with anti-Thy 1.2 serum and complement. Macrophages from peritoneal exudates of normal mice, used as control host cell population, showed similar tumor-enhancing activity. These findings suggest that tumor infiltrating host cells, predominantly macrophages appear to be the cell type responsible for tumor enhancement and active promotion of tumor growth (in vivo).  相似文献   

7.
miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting   总被引:21,自引:0,他引:21  
Current understanding of microRNA (miRNA) biology is limited, and antisense oligonucleotide (ASO) inhibition of miRNAs is a powerful technique for their functionalization. To uncover the role of the liver-specific miR-122 in the adult liver, we inhibited it in mice with a 2'-O-methoxyethyl phosphorothioate ASO. miR-122 inhibition in normal mice resulted in reduced plasma cholesterol levels, increased hepatic fatty-acid oxidation, and a decrease in hepatic fatty-acid and cholesterol synthesis rates. Activation of the central metabolic sensor AMPK was also increased. miR-122 inhibition in a diet-induced obesity mouse model resulted in decreased plasma cholesterol levels and a significant improvement in liver steatosis, accompanied by reductions in several lipogenic genes. These results implicate miR-122 as a key regulator of cholesterol and fatty-acid metabolism in the adult liver and suggest that miR-122 may be an attractive therapeutic target for metabolic disease.  相似文献   

8.
The von Hippel-Lindau tumor suppressor pVHL plays a critical role in the pathogenesis of familial and sporadic clear cell carcinomas of the kidney and hemangioblastomas of the retina and central nervous system. pVHL targets the oxygen sensitive alpha subunit of hypoxia-inducible factor (HIF) for proteasomal degradation, thus providing a direct link between tumorigenesis and molecular pathways critical for cellular adaptation to hypoxia. Cell type specific gene targeting of VHL in mice has demonstrated that proper pVHL mediated HIF proteolysis is fundamentally important for survival, proliferation and differentiation of many cell types and furthermore, that inactivation of pVHL may, unexpectedly, inhibit tumor growth under certain conditions. Mouse knock out studies have provided novel mechanistic insights into VHL associated tumorigenesis and established a central role for HIF in the development of the VHL phenotype.  相似文献   

9.
We have recently shown that effective cytokine gene therapy of solid tumors in HLA-A2 transgenic (HHD) mice lacking murine MHC class I molecule expression results in the generation of HLA-A2-restricted CD8(+) T effector cells selectively recognizing tumor blood vessel-associated pericytes and/or vascular endothelial cells. Using an HHD model in which HLA-A2(neg) tumor (MC38 colon carcinoma or B16 melanoma) cells are not recognized by the CD8(+) T cell repertoire, we now show that vaccines on the basis of tumor-associated blood vessel Ags (TBVA) elicit protective Tc1-dependent immunity capable of mediating tumor regression or extending overall survival. Vaccine efficacy was not observed if (HLA-A2(neg)) wild-type C57BL/6 mice were instead used as recipient animals. In the HHD model, effective vaccination resulted in profound infiltration of tumor lesions by CD8(+) (but not CD4(+)) T cells, in a coordinate reduction of CD31(+) blood vessels in the tumor microenvironment, and in the "spreading" of CD8(+) T cell responses to alternate TBVA that were not intrinsic to the vaccine. Protective Tc1-mediated immunity was durable and directly recognized pericytes and/or vascular endothelial cells flow-sorted from tumor tissue but not from tumor-uninvolved normal kidneys harvested from these same animals. Strikingly, the depletion of CD8(+), but not CD4(+), T cells at late time points after effective therapy frequently resulted in the recurrence of disease at the site of the regressed primary lesion. This suggests that the vaccine-induced anti-TBVA T cell repertoire can mediate the clinically preferred outcomes of either effectively eradicating tumors or policing a state of (occult) tumor dormancy.  相似文献   

10.
11.
12.
Antibody-based targeting of the tumor vasculature   总被引:4,自引:0,他引:4  
Conventional cytotoxic therapies of cancer often suffer from a lack of specificity, leading to a poor therapeutic index and considerable toxicities to normal organs. An elegant way to overcome the disadvantages of conventional tumor therapy is the selective delivery of therapeutics to the tumor site by their conjugation to a carrier molecule specific for a tumor-associated molecular marker. Markers expressed on the tumor's vasculature represent particularly attractive targets for a site-specific pharmacodelivery due to their inherent accessibility for blood-borne agents and the various therapeutic options that they allow, ranging from intraluminal blood coagulation to the recruitment of immune cells. In this review, we will outline advances in the preclinical and clinical evaluation of antibody-based vascular targeting agents, describe technologies for the discovery of novel vascular targets and discuss future prospects for vascular targeting applications.  相似文献   

13.
Sun Y  Lin R  Dai J  Jin D  Wang SQ 《Oligonucleotides》2006,16(4):365-374
Survivin, an inhibitor of apoptosis protein, deserves attention as a selective target for cancer therapy because it is overexpressed in many cancers, including human hepatocellular carcinoma (HCC). Here, we report a novel antisense oligonucleotide (ASO) against survivin for its effectiveness against tumor growth both in vitro and in vivo, and providing evidence in treatment for HCC. Initially, transfection of liver tumor cells HepG2 with ASO resulted in significant cells growth inhibition and reduction expression of survivin mRNA and protein, in a dose-dependent manner. Using caspase-3 protease activation assays, we observed that ASO has induced significantly greater apoptosis rate compared to control oligonucleotides. Furthermore, we used an orthotopic transplant model of HCC in nude mice to investigate the effect of ASO on tumor growth in vivo, and ASO reagents were delivered by intravenous injection. Interestingly, this systemic treatment also resulted in significant inhibition in tumor growth. Tumor growth in mice treated with ASO (50 and 75 mg/kg per day) was significantly inhibited (45.31% and 60.94%, respectively) compared with saline-injected group (p < 0.01), in a dose-dependent manner, and the effect of ASO on tumor growth was associated with downregulation of survivin in tumor xenografts. Moreover, the level of serum alpha-fetoprotein in ASO-treated groups was also decreased in a dose-dependent manner. Taken together, these data suggest that the usefulness of survivin ASO could potentially be a promising gene therapy approach to treatment of HCC.  相似文献   

14.
Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy represents a new strategy for the development of anti-cancer therapies. In recent years, there has been made great progress in anti-angiogenic therapy. As far as the passive immunotherapy is concerned, a recombinant humanized antibody to vascular endothelial growth factor (VEGF)-Avastin has been approved by FDA as the first angiogenesis inhibitor to treat colorectal cancer. For active specific immunotherapy, various strategies for cancer vaccines, including whole endothelial cell vaccines, dendritic cell vaccines, DNA vaccines, and peptides or protein vaccines, have been developed to break immune tolerance against important molecules associated with tumor angiogenesis and induce angiogenesis-specific immune responses. This article reviews the angiogenesis-targeted immunotherapy of tumor from the above two aspects.  相似文献   

15.
Immunotherapy of tumor by targeting angiogenesis   总被引:4,自引:0,他引:4  
As early as 1971, Folkman proposed that thegrowth of and persistence of solid tumors and theirmetastasis depended on an adequate blood supply and,therefore, an anti-angiogenic strategy might be effec-tive as an anticancer therapy. As a strategy for cancertherapy, anti-angiogenic therapy attempts to stop newvessels from forming around a tumor and break up theexisting network of abnormal capillaries that feed thecancerous mass[1,2]. Anti-angiogenic therapy take someadvantages over the convention…  相似文献   

16.
17.
Receptor targeting is an effective method of enhancing fluorescence signal in tumors for optical imaging. We previously used epidermal growth factor (EGF) conjugated to IRDye 800CW to detect and track orthotopic prostate tumors in mice. In this study, our goal was to identify a reliable assay for targeting agent integrity in vitro that correlated with signal strength in vivo. Binding of IRDye 800CW EGF to intact A431 human epidermoid carcinoma cells was quantified in a microplate assay. Specificity was confirmed by competition with unlabeled EGF or monoclonal antibody blocking. Biological activity of intact and damaged targeting agents relative to unlabeled EGF was determined by binding and stimulation of extracellular signal-regulated kinase (ERK) phosphorylation. Both assays indicated a reduction of up to 60% of the fluorescence intensity with damaged agents. Using a research prototype imaging system optimized for IRDye 800CW detection, we compared the efficacy of intact and damaged targeting agents for imaging subcutaneous tumors in mice. In live animal images and in sections of the excised tumors, damaged targeting agents consistently yielded diminished fluorescence signals corresponding to the reduction observed in microplate assays. This is the first study to directly correlate targeting agent signal strength in whole cell binding, In-Cell Western, and in vivo near-infrared imaging.  相似文献   

18.
Optical antisense imaging of tumor with fluorescent DNA duplexes   总被引:7,自引:0,他引:7  
Antisense targeting of tumor with fluorescent conjugated DNA oligomers has the potential of improving tumor/normal tissue ratios over that achievable by nuclear antisense imaging. When administered as a linear duplex of two fluorophore-conjugated oligomers arranged in a manner that inhibits fluorescence as the duplex and designed to dissociate only in the presence of the target mRNA, the fluorescence signal should in principle be inhibited everywhere except in the target cell. Optical imaging by fluorescence quenching using linear fluorophore-conjugated oligomers has not been extensively investigated and may not have been previously considered for antisense targeting. We evaluated in cell culture and in KB-G2 tumor bearing nude mice a 25-mer phosphorothioate (PS) anti- mdr1 antisense DNA conjugated with the Cy5.5 emitter on its 3' equivalent end and hybridized as a linear duplex with a shorter 18-mer phosphodiester (PO) complementary DNA (cDNA) with the Black Hole inhibitor BHQ3 on its 5' end. In serum environments, 90% of the DNA25-Cy5.5 fluorescence was inhibited immediately following addition of the cDNA18-BHQ3 and showed only slight loss of inhibition over 24 h at 37 degrees C. As evidence of antisense specific binding, when incubated with the DNA25-Cy5.5/cDNA18-BHQ3 duplex, the fluorescence was lower in KB-31 (Pgp +/-) cells compared to KB-G2 (Pgp++) cells, but when incubated with the control cDNA18-Cy5.5/DNA25-BHQ3 duplex in which the fluorophores were reversed, the fluorescence of both cell types was low. As further evidence of specific binding, the fluorescent intensity of total RNA from KB-G2 cells incubated with the study duplex showed evidence of dissociation and hybridization with the target mRNA. Furthermore, the fluorescence microscopy images of KB-G2 cells incubated with DNA25-Cy5.5 as the singlet or study duplex show that migration in both cases is to the nucleus. The animal studies were performed in mice bearing KB-G2 tumor in one thigh and receiving iv the study or control duplexes. The tumor/normal thigh fluorescence ratio was clearly positive as early as 30 min postinjection in the study mice and reached a maximum at 5 h. By contrast, much lower fluorescence was observed in mice receiving the control duplex at the same dosage. Fluorescence microscope imaging showed that the Cy5.5 fluorescence was much higher in tumor sections from the animal that had received the study rather than control duplex. Thus combining a fluorophore-conjugated antisense DNA with an inhibitor-conjugated shorter complementary cDNA inhibited fluorescence both in cell culture and in tumored animals except in the presence of the target mRNA. This proof of concept investigation of optical antisense targeting therefore suggests that further studies including optimization of this approach are appropriate.  相似文献   

19.
20.
靶向膜型1基质金属蛋白酶反义肽的虚拟筛选与分子模拟   总被引:1,自引:0,他引:1  
膜型1基质金属蛋白酶(Membrane type-1 matrix metalloproteinase,MT1-MMP,MMP14)在肿瘤的发生发展及转移中起着重要作用,是肿瘤潜在理想的药物靶标。为了获得MT1-MMP结合肽,我们首先采用生物信息学方法分析MMPs序列,获得MT1-MMP差异大且特异的序列。以此为正义肽靶标,设计反义肽库,然后通过分子对接、分子动力学模拟以及体外细胞实验等多种方法,进行靶向MT1-MMP反义肽的筛选与活性研究。多序列比对确定了位于MT1-MMP环区的特异序列AYIREGHE(简称MT1-loop),并构建1 536条反义肽。经两轮虚拟筛选,选取打分位于前五的反义肽用于后续研究。该五条反义肽与MT1-MMP存在较强的相互作用且能很好地对接于正义肽区域。进一步分析其与MMPs其他家族成员(MMP1-3,MMP7-13,MMP14HPX,MMP16)的亲和力,发现反义肽FVTFPYIR对MT1-MMP具有更强的特异性。分子动力学模拟表明,反义肽FVTFPYIR可能是通过影响受体MT1-MMP的构象稳定性,进而影响其功能活性。体外细胞实验初步确定反义肽FVTFPYIR可选择性地抑制表达MT1-MMP的人成骨肉瘤细胞MG63和乳腺癌MDA-MB-231细胞的增殖。本研究为抗肿瘤反义肽先导药物的研发提供了一种新的思路与途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号