首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymorphic phase behavior of dielaidoylphosphatidylethanolamine (DEPE) has been investigated using spectrophotometry and 31P nuclear magnetic resonance (NMR). It has been demonstrated that the bilayer to inverted hexagonal phase transition can be observed by spectrophotometry. The effects of the methanol, ethanol, and propanol on both the gel to liquid crystal transition and the bilayer to inverted hexagonal transition were investigated by spectrophotometry. It was shown that these alcohols shift the gel to liquid-crystalline phase transition to lower temperature, whereas the bilayer to inverted hexagonal phase transition is shifted to higher temperatures by these alcohols. The structural transition between the bilayer and inverted hexagonal phase of pure DEPE was also investigated by 31P-NMR.  相似文献   

2.
P-31 single-pulse and cross-polarization (CP) nuclear magnetic resonance spectra were obtained of aqueous dispersions of pure phospholipids. Dimyristoyl phosphatidylcholine, dipalmitoylphosphatidylcholine, 1-palmitoyl-2-oleoyl phosphatidylcholine, egg phosphatidylcholine, bovine brain sphingomyelin, and transphosphatidylated (from egg phosphatidylcholine) phosphatidylethanolamine were studied. The spectra from all the phospholipids, taken in the usual single-pulse mode, showed the pseudo-axially symmetric powder pattern typical of phospholipids in a hydrated lamellar form. P-31 CP spectra of all the phosphatidylcholines and phosphatidylethanolamine revealed a decrease in intensity in the vicinity of the isotropic chemical shift as long as the lipid was above the gel-to-liquid crystalline phase transition temperature. This intensity pattern has been observed previously for C-13 CP spectra of molecules rotating rapidly about a single well-defined axis (e.g., solid benzene) (Pines, A., M.G. Gibby, and J.S. Waugh, 1973, J. Chem. Phys., 59:569-590). Pure lipid dispersions below their gel-to-liquid crystalline phase transition temperature, including dipalmitoylphosphatidylcholine and sphingomyelin, do not exhibit a local minimum in the CP spectrum at the position of the isotropic chemical shift. Thus, below the phase transition temperature, there is not the same rapid rotation of the headgroup about a well-defined axis. A dramatic change in the rate of headgroup rotation is shown to take place at the pretransition of dipalmitoylphosphatidylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
31P-NMR measurements demonstrate that at 37 degrees C, independent of the photolytic state of the photopigment rhodopsin, the lipids in the photo-receptormembrane are almost exclusively organised in a bilayer. In strong contrast, the 31P-NMR spectra of the extracted lipids are characteristic for the hexagonal HII phase and an isotropic phase. The isotropic phase is characterised by freeze-fracture electron microscopy as particles and pits on smooth surfaces, possibly indicating inverted micelles. These results suggest a structural role for rhodopsin in maintaining the photoreceptor membrane lipids in a bilayer configuration.  相似文献   

4.
The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, is a common inhabitant of the human upper aerodigestive tract. The organism produces an RTX (Repeats in ToXin) toxin (LtxA) that kills human white blood cells. LtxA is believed to be a membrane-damaging toxin, but details of the cell surface interaction for this and several other RTX toxins have yet to be elucidated. Initial morphological studies suggested that LtxA was bending the target cell membrane. Because the ability of a membrane to bend is a function of its lipid composition, we assessed the proficiency of LtxA to release of a fluorescent dye from a panel of liposomes composed of various lipids. Liposomes composed of lipids that form nonlamellar phases were susceptible to LtxA-induced damage while liposomes composed of lipids that do not form non-bilayer structures were not. Differential scanning calorimetry demonstrated that the toxin decreased the temperature at which the lipid transitions from a bilayer to a nonlamellar phase, while (31) P nuclear magnetic resonance studies showed that the LtxA-induced transition from a bilayer to an inverted hexagonal phase occurs through the formation of an isotropic intermediate phase. These results indicate that LtxA cytotoxicity occurs through a process of membrane destabilization.  相似文献   

5.
The effect of hydrophobic peptides on the lipid phase behavior of an aqueous dispersion of dioleoylphosphatidylethanolamine and dioleoylphosphatidylglycerol (7:3 molar ratio) was studied by (31)P NMR spectroscopy. The peptides (WALPn peptides, where n is the total number of amino acid residues) are designed as models for transmembrane parts of integral membrane proteins and consist of a hydrophobic sequence of alternating leucines and alanines, of variable length, that is flanked on both ends by tryptophans. The pure lipid dispersion was shown to undergo a lamellar-to-isotropic phase transition at approximately 60 degrees C. Small-angle x-ray scattering showed that at a lower water content a cubic phase belonging to the space group Pn3m is formed, suggesting also that the isotropic phase in the lipid dispersion represents a cubic liquid crystalline phase. It was found that the WALP peptides very efficiently promote formation of nonlamellar phases in this lipid system. At a peptide-to-lipid (P/L) molar ratio of 1:1000, the shortest peptide used, WALP16, lowered the lamellar-to-isotropic phase transition by approximately 15 degrees C. This effect was less for longer peptides. For all of the WALP peptides used, an increase in peptide concentration led to a further lowering of the phase transition temperature. At the highest P/L ratio (1:25) studied, WALP16 induced a reversed hexagonal liquid crystalline (H(II)) phase, while the longer peptides still promoted the formation of an isotropic phase. Peptides with a hydrophobic length larger than the bilayer thickness were found to be unable to inhibit formation of the isotropic phase. The results are discussed in terms of mismatch between the hydrophobic length of the peptide and the hydrophobic thickness of the lipid bilayer and its consequences for lipid-protein interactions in membranes.  相似文献   

6.
The interaction of cardiotoxin IIa, a small basic protein extracted from Naja mossambica mossambica venom, with dimyristoylphosphatidic acid (DMPA) membranes has been investigated by solid-state 31P nuclear magnetic resonance spectroscopy. Both the spectral lineshapes and transverse relaxation time values have been measured as a function of temperature for different lipid-to-protein molar ratios. The results indicate that the interaction of cardiotoxin with DMPA gives rise to the complete disappearance of the bilayer structure at a lipid-to-protein molar ratio of 5:1. However, a coexistence of the lamellar and isotropic phases is observed at higher lipid contents. In addition, the number of phospholipids interacting with cardiotoxin increases from about 5 at room temperature to approximately 15 at temperatures above the phase transition of the pure lipid. The isotropic structure appears to be a hydrophobic complex similar to an inverted micellar phase that can be extracted by a hydrophobic solvent. At a lipid-to-protein molar ratio of 40:1, the isotropic structure disappears at high temperature to give rise to a second anisotropic phase, which is most likely associated with the incorporation of the hydrophobic complex inside the bilayer.  相似文献   

7.
31P-NMR measurements demonstrate that at 37°C, independent of the photolytic state of the photopigment rhodopsin, the lipids in the photoreceptormembrane are almost exclusively organised in a bilayer. In strong contrast, the 31P-NMR spectra of the extracted lipids are characteristic for the hexagonal HII phase and an isotropic phase. The isotropic phase is characterised by freeze-fracture electron microscopy as particles and pits on smooth surfaces, possibly indicating inverted micelles. These results suggest a structural role for rhodopsin in maintaining the photoreceptor membrane lipids in a bilayer configuration.  相似文献   

8.
F S Hing  P R Maulik  G G Shipley 《Biochemistry》1991,30(37):9007-9015
The ether-linked phospholipid 1,2-dihexadecylphosphatidylethanolamine (DHPE) was studied as a function of hydration and in fully hydrated mixed phospholipid systems with its ester-linked analogue 1,2-dipalmitoylphosphatidylethanolamine (DPPE). A combination of differential scanning calorimetry (DSC) and X-ray diffraction was used to examine the phase behavior of these lipids. By DSC, from 0 to 10 wt % H2O, DHPE displayed a single reversible transition that decreased from 95.2 to 78.8 degrees C and which was shown by X-ray diffraction data to be a direct bilayer gel to inverted hexagonal conversion, L beta----HII. Above 15% H2O, two reversible transitions were observed which stabilized at 67.1 and 92.3 degrees C above 19% H2O. X-ray diffraction data of fully hydrated DHPE confirmed the lower temperature transition to be a bilayer gel to bilayer liquid-crystalline (L beta----L alpha) phase transition and the higher temperature transition to be a bilayer liquid-crystalline to inverted hexagonal (L alpha----HII) phase transition. The lamellar repeat distance of gel-state DHPE increased as a function of hydration to a limiting value of 62.5 A at 19% H2O (8.6 mol of water/mol of DHPE), which corresponds to the hydration at which the transition temperatures are seen to stabilize by DSC. Electron density profiles of DHPE, in addition to calculations of the lipid layer thickness, confirmed that DHPE in the gel state forms a noninterdigitated bilayer at all hydrations. Fully hydrated mixed phospholipid systems of DHPE and DPPE exhibited two reversible transitions by DSC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
E J Dufourc  I C Smith  J Dufourcq 《Biochemistry》1986,25(21):6448-6455
Solid-state deuterium and phosphorus-31 nuclear magnetic resonance (2H and 31P NMR) studies of deuterium-enriched phosphatidylcholine [( 3',3'-2H2]DPPC, [sn-2-2H31]DPPC) and ditetradecylphosphatidylglycerol (DMPG-diether), as water dispersions, were undertaken to investigate the action of melittin on zwitterionic and negatively charged membrane phospholipids. When the lipid-to-protein ratio (Ri) is greater than or equal to 20, the 2H and 31P NMR spectral features indicate that the system is constituted by large bilayer structures of several thousand angstrom curvature radius, at T greater than Tc (Tc, temperature of "gel-to-liquid crystal" phase transition of pure lipid dispersions). At T approximately Tc, a detailed analysis of the lipid chain ordering shows that melittin induces a slight disordering of the "plateau" positions concomitantly with a substantial ordering of positions near the bilayer center. At T much greater than Tc, an apparent general chain disordering is observed. These findings suggest that melittin is in contact with the acyl chain segments and that its position within the bilayer may depend on the temperature. On a cooling down below Tc, for Ri greater than 20, two-phase spectra are observed, i.e., narrow single resonances superimposed on gel-type phosphorus and deuterium powder patterns. These narrow resonances are characteristic of small structures (vesicles, micelles, ... of a few hundred angstrom curvature radius) undergoing fast isotropic reorientation, which averages to zero both the quadrupolar and chemical shift anisotropy interactions. On an increase of the temperature above Tc, the NMR spectra indicate that the system returns reversibly to large bilayer structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Aqueous dispersions (pH 4.0) of a 2:1 (mol/mol) mixture of myristic acid with dimyristoylphosphatidylcholine undergo a sharp transition at 45-47 degrees C from a lamellar gel phase to a fluid phase which is optically isotropic. This fluid phase gives rise to 31P-NMR spectra, and 2H-NMR spectra of the chain-deuterated components, which are also isotropic. X-ray diffraction studies of the fluid phase at 49 degrees C, reveal reflections with spacings in the ratio square root of 2: (square root of 3): square root of 4: square root of 6: square root of 8, accompanied by a strong diffuse scatter. These reflections index on a cubic lattice of primitive space group Pn3 or Pn3m, or possibly the body-centered group Im3m, with a lattice constant of 21.2 nm. The dimensions of the phase are consistent with a structure composed of two systems of tetrahedrally (octahedrally) oriented inverted lipid cylinders, found for other cubic lipid phases with Pn3m (Im3m) symmetry. At higher temperatures the cubic phase gradually converts, with increasing temperature, to a coexisting inverted hexagonal phase.  相似文献   

11.
Sphingosine-1-phosphate (S1P) is currently considered to be an important signaling molecule in cell metabolism. We studied a number of relevant biophysical properties of S1P, using mainly Langmuir balance, differential scanning calorimetry, 31P-NMR, and infrared (IR) spectroscopy. We found that, at variance with other, structurally related sphingolipids that are very hydrophobic, S1P may occur in either an aqueous dispersion or a bilayer environment. S1P behaves in aqueous media as a soluble amphiphile, with a critical micelle concentration of ≈12 μM. Micelles give rise to larger aggregates (in the micrometer size range) at and above a 1 mM concentration. The aggregates display a thermotropic transition at ∼60°C, presumably due to the formation of smaller structures at the higher temperatures. S1P can also be studied in mixtures with phospholipids. Studies with dielaidoylphosphatidylethanolamine (DEPE) or deuterated dipalmitoylphosphatidylcholine (DPPC) show that S1P modifies the gel-fluid transition of the glycerophospholipids, shifting it to lower temperatures and decreasing the transition enthalpy. Low (<10 mol %) concentrations of S1P also have a clear effect on the lamellar-to-inverted hexagonal transition of DEPE, i.e., they increase the transition temperature and stabilize the lamellar versus the inverted hexagonal phase. IR spectroscopy of natural S1P mixed with deuterated DPPC allows the independent observation of transitions in each molecule, and demonstrates the existence of molecular interactions between S1P and the phospholipid at the polar headgroup level that lead to increased hydration of the carbonyl group. The combination of calorimetric, IR, and NMR data allowed the construction of a temperature-composition diagram (“partial phase diagram”) to facilitate a comparative study of the properties of S1P and other related lipids (ceramide and sphingosine) in membranes. In conclusion, two important differences between S1P and ceramide are that S1P stabilizes the lipid bilayer structure, and physiologically relevant concentrations of S1P can exist dispersed in the cytosol.  相似文献   

12.
Pressure is found to destabilize the non-bilayer phase with respect to the bilayer in a model lipid system. The lamellar to inverted hexagonal (H11) phase transition of aqueous egg phosphatidylethanolamine is shifted to higher temperatures by hydrostatic pressure. The slope of the increase in transition temperature is constant to beyond 300 bar, and is greater than that seen for other lipid phase transitions. This behavior is consistent with the hypothesis that increasing chain disorder drives the conversion from the bilayer into the hexagonal phase. If this non-bilayer lipid phase is an intermediate in membrane fusion, then pressure should inhibit the process. This may explain the inhibition of chemical transmission at neural synapses by pressure.  相似文献   

13.
M J Swamy  D Marsh 《Biochemistry》2001,40(49):14869-14877
The interaction of avidin with aqueous dispersions of N-biotinylphosphatidylethanolamines, of acyl chain lengths C(14:0), C(16:0), and C(18:0), was studied by using spin-label electron spin resonance (ESR) spectroscopy, (31)P nuclear magnetic resonance ((31)P NMR) spectroscopy, differential scanning calorimetry, and chemical binding assays. In neutral buffer containing 1 M NaCl, binding of avidin is due to specific interaction with the biotinyl lipid headgroup because avidin presaturated with biotin does not bind. Saturation binding of the protein corresponds to a ratio of 50 lipid molecules per tetrameric avidin. Phospholipid probes spin-labeled at various positions between C-4 and C-14 in the sn-2 chain were used to characterize the effects of avidin binding on the lipid chain dynamics. In the fluid phase, protein binding results in a decrease of chain mobility at all positions of labeling while the flexibility gradient characteristic of a liquid-crystalline lipid phase is maintained. There is no evidence from the spin-label ESR spectra for penetration of the protein into the hydrophobic interior of the membrane. At temperatures corresponding to the gel phase, the lipid chain mobility increases on binding protein. The near constancy in mobility found with chain position, however, suggests that in the gel phase the lipid chains remain interdigitated upon binding avidin. Binding of increasing amounts of avidin results in a gradual decrease of the lipid chain-melting transition enthalpy with only small change in the transition temperature. At saturation binding, the calorimetric enthalpy is reduced to zero. (31)P NMR spectroscopy indicates that protein binding increases the surface curvature of dispersions of all three biotin lipids. The C(14:0) biotin lipid yields isotropic (31)P NMR spectra in the presence of avidin at all temperatures between 10 and 70 degrees C, in contrast to dispersions of the lipid alone, which give lamellar spectra at low temperature that become isotropic at the chain-melting temperature. In the presence of avidin, the C(16:0) and C(18:0) biotin lipids yield primarily lamellar (31)P NMR spectra at low temperature with a small isotropic component; the intensity of the isotropic component increases with temperature, and the spectra narrow and become totally isotropic at high temperature, in contrast to dispersions of the lipids alone, which give lamellar spectra in the fluid phase. The binding of avidin therefore reduces the cooperativity of the biotin lipid packing, regulates the mobility of the lipid chains, and enhances the surface curvature of the lipid aggregates. These effects may be important for both lateral and transbilayer communication in the membrane.  相似文献   

14.
The interaction of zwitterionic lipid DMPC and DPPC with cyclic hexapeptide, cyclo (D-Ala-L-Pro-L-Ala)2 was studied using circular dichroism (CD) and differential scanning calorimetry (DSC). Preliminary membrane conductance results showed that the peptide has a tendency to form channels inside the lipid bilayer. CD studies indicated that as the lipid/peptide (L/P) ratio (DMPC/peptide) was increased, the magnitude of the negative CD band having a lambda(max) around 200 nm decreased. At a L/P ratio of 210:1, this band disappeared completely, indicating dramatic conformational changes in the peptide on interaction with the lipid bilayer. Reduction of the phase transition temperature and the maximum heat capacity of the lipid bilayer (DPPC) for gel-to-liquid crystalline phase transition indicates a strong interaction of the peptide with the lipid bilayer.  相似文献   

15.
The effect of dolichols, polyprenols, dolichol esterified with fatty acids, and dolichyl phosphate on the structure and fluidity of model membranes was studied using 31P NMR, small-angle x-ray scattering, differential scanning calorimetry, and freeze-fracture electron microscopy. These studies suggest that dolichol and dolichol derivatives destabilize unsaturated phosphatidylethanolamine containing bilayer structures and promote hexagonal II phase formation; high concentrations of dolichol induce lipid structures characterized by "isotropic" 31P NMR and particulate fracture faces; dolichol, contrary to cholesterol, has no effect on the thermotropic behavior of membranes consisting of phosphatidylcholine, while dolichyl-P incorporation abolishes the transition from the gel to liquid crystalline phase in 1,2-dimyristoyl-sn-glycero-3-phosphocholine; both dolichol and dolichyl-P increase the fatty acid fluidity in phosphatidylethanolamine mixtures; the effect of dolichol on bilayer structure and fluidity is more pronounced with increasing number of isoprene residues; dolichol esters are only soluble to a limited extent in the bilayer and segregates into domains at low concentrations; the results are consistent with a localization of dolichyl-P in which the phosphate group is oriented to the water interphase. The induction of hexagonal II phase by dolichyl-P may elicit the transmembrane movement of glycosylated lipid intermediate.  相似文献   

16.
Mechanism of lipid bilayer disruption by the human antimicrobial peptide,LL-37   总被引:10,自引:0,他引:10  
LL-37 is an amphipathic, alpha-helical, antimicrobial peptide. (15)N chemical shift and (15)N dipolar-shift spectroscopy of site-specifically labeled LL-37 in oriented lipid bilayers indicate that the amphipathic helix is oriented parallel to the surface of the bilayer. This surface orientation is maintained in both anionic and zwitterionic bilayers and at different temperatures and peptide concentrations, ruling out a barrel-stave mechanism for bilayer disruption by LL-37. In contrast, electrostatic factors, the type of lipid, and the presence of cholesterol do affect the extent to which LL-37 perturbs the lipids in the bilayer as observed with (31)P NMR. The (31)P spectra also show that micelles or other small, rapidly tumbling membrane fragments are not formed in the presence of LL-37, excluding a detergent-like mechanism. LL-37 does increase the lamellar to inverted hexagonal phase transition temperature of both PE model lipid systems and Escherichia coli lipids, demonstrating that it induces positive curvature strain in these environments. These results support a toroidal pore mechanism of lipid bilayer disruption by LL-37.  相似文献   

17.
In this study, 2H and 31P-NMR techniques were used to study the effects of trehalose and glycerol on phase transitions and lipid acyl chain order of membrane systems derived from cells of E. coli unsaturated fatty acid auxotroph strain K1059, which was grown in the presence of [11,11-2H2]-oleic acid or [11,11-2H2]-elaidic acid. From an analysis of the temperature dependence of the quadrupolar splitting it could be concluded that neither 1 M trehalose or glycerol generally had any significant effect on the temperature of the lamellar gel to liquid-crystalline phase transition. In the case of the oleate-containing hydrated total lipid extract, glycerol but not trehalose caused a 5°C increase of this transition temperature. In general, both cryoprotectants induced an ordering of the acyl chains in the liquid-crystalline state. Trehalose and glycerol both decrease the bilayer to non-bilayer transition temperature of the hydrated lipid extract of oleate-grown cells by about 5°C, but only trehalose in addition induces an isotropic to hexagonal (HII) phase transition. In the biological membranes, trehalose and not glycerol destabilised the lipid bilayer, and in the case of the E. coli spheroplasts, part of the induced non-bilayer structures is ascribed to a hexagonal (HII) phase in analogy with the total lipids. Interestingly, 1 mM Mg2+ was a prerequisite for the destabilisation of the lipid bilayer. In the hydrated total lipid extract of E. coli grown on the more ordered elaidic acid, both transition temperatures were shifted about 20°C upwards compared with the oleate-containing lipid, but the effect of trehalose on the lipid phase behaviour was similar. The bilayer destabilising ability of trehalose might have implications for the possible protection of biological systems by (cryo-)protectants during dehydration, in that protection is unlikely to be caused by preventing the occurrence of polymorphic phase transitions.  相似文献   

18.
R M Epand 《Biochemistry》1985,24(25):7092-7095
The bilayer to hexagonal phase transition temperatures of dielaidoylphosphatidylethanolamine and 1-palmitoyl-2-oleoylphosphatidylethanolamine are 65.6 and 71.4 degrees C, respectively. Using high-sensitivity differential scanning calorimetry, I have shown that these transition temperatures are extremely sensitive to the presence of small amounts of other lipid components. For example, at a mole fraction of only 0.01, dilinolenin lowers the bilayer to hexagonal phase transition temperature of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine by 8.5 degrees C. Other diacylglycerols have similar effects on this transition temperature, although the degree of unsaturation of the acyl chains has some effect, with distearin being less potent. In comparison, the 20-carbon alkane eicosane lowers this transition temperature by 5 degrees C, while palmitoyl-lysolecithin raises it by 2.5 degrees C. Similar effects of these additives on the bilayer to to hexagonal phase transition temperature are observed with dielaidoylphosphatidylethanolamine. At these concentrations of additive, there is no effect on the gel-state to liquid-crystalline-state transition temperature. The observed shifts in the temperature of the bilayer to the hexagonal phase transition can be qualitatively interpreted in terms of the effects of these additives on the hydrophilic surface area and on the hydrophobic volume. Substances expanding the hydrophobic domain promote hexagonal phase formation and lower the bilayer to hexagonal phase transition temperature. The sensitivity of the bilayer to hexagonal phase transition temperature to the presence of additives is at least as great as that which has been observed for any other lipid phase transition.  相似文献   

19.
It was recently shown that oligolamellar vesicles of 3:1 mixtures of dioleoylphosphatidylethanolamine (DOPE) and the photopolymerizable lipid 1,2-bis[10-(2',4'-hexadienoyloxy)decanoyl]-sn-glycero-3-phosphocho line (SorbPC) are destabilized by polymerization of the SorbPC [Lamparski, H., Liman, U., Frankel, D.A., Barry, J.A., Ramaswami, V., Brown, M.F., & O'Brien, D.F. (1992) Biochemistry 31, 685-694]. The current work describes the polymorphic phase behavior of these mixtures in extended bilayers, as studied by 31P NMR spectroscopy and X-ray diffraction. In the NMR experiments, samples with varying degrees of polymerization were slowly raised in temperature, with spectra acquired every 2.5-10 degrees C. In the unpolymerized mixiture, and in those photopolymerized samples where the monomeric SorbPC was decreased by 33% and 51%, an isotropic signal grew progressively until no signal from the lamellar liquid-crystalline (L alpha) phase remained. In the highly polymerized sample with a 90% loss of monomeric SorbPC, less than 20% of the lipids underwent this transition. In none of the samples was an inverted hexagonal phase (HII) observed, under conditions of slow heating to almost 100 degrees C. The X-ray diffraction studies indicated that samples which exhibit the isotropic NMR signal corresponded to a structure exhibiting no well-defined crystalline order, which upon thermal cycling became an inverted cubic phase belonging to either the Pn3m or Pn3 space groups. The temperature of the transition to the cubic precursor decreased as the extent of polymerization increased, demonstrating that photopolymerization of these lipid bilayers can significantly alter the composition and thermotropic phase behavior of the mixture.  相似文献   

20.
The conformation and motion of the choline head group in lipid bilayers above and below the gel-to-liquid crystal transition point are studied by means of deuterium and phosphorus magnetic resonance. For this purpose dipalmitoyl-3-sn-phosphatidylcholine is selectively deuterated at various positions on the choline and glycerol constituents. The residual deuteron quadrupole couplings and the phosphorus chemical-shift anisotropy of the corresponding lipid-water mixtures yield quantitative information on the segmental motions. The choline methyl group is only slightly hindered in its movement, but the motional freedom becomes increasingly restricted the closer the segment is located to the glycerol backbone. The average value of the OC-CN bond rotation angle changes with temperature. Increasing the temperature rotates the choline methyl group into the vicinity of the phosphorus atom. The choline group as a whole is thus characterized by a flexible, temperature-dependent structure. Its orientation in space is not fixed, either parallel or perpendicular to the bilayer surface. Instead all segments execute angular oscillations with varying degrees of restriction around the normal on the bilayer surface. The gel-to-liquid crystal phase transition at 41 degrees is clearly reflected in the deuterium and phosphorus resonance spectra of the choline moiety, while no change is observed at 34 degrees. The calorimetric pretransition at 34 degrees seems not to be associated with a conformational change in the choline group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号