首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nondenaturing electrospray mass spectrometry (ESI-MS) has been used to reveal the presence of potential ligands in the ligand-binding domain (LBD) of orphan nuclear receptors. This new approach, based on supramolecular mass spectrometry, allowed the detection and identification of fortuitous ligands for the retinoic acid-related orphan receptor beta (RORbeta) and the ultraspiracle protein (USP). These fortuitous ligands were specifically captured from the host cell with the proper stoichiometry. After organic extraction, these molecules have been characterized by classic analytical methods and identified as stearic acid for RORbeta and a phosphatidylethanolamine (PE) for USP, as confirmed by crystallography. These molecules act as "fillers" and may not be the physiological ligands, but they prove to be essential to stabilize the active conformation of the LBD, enabling its crystallization. The resulting crystal structures provide a detailed picture of the ligand-binding pocket, allowing the design of highly specific synthetic ligands that can be used to characterize the function of orphan nuclear receptors. An additional advantage of this new method is that it is not based on a functional test and that it can detect low-affinity ligands.  相似文献   

3.
In silico docking of a chemical library with the ligand-binding domain of thyroid hormone nuclear receptor-beta (TRbeta) suggested that farnesyl pyrophosphate (FPP), a key intermediate in cholesterol synthesis and protein farnesylation, might function as an agonist. Surprisingly, addition of FPP to cells activated TR as well as the classical steroid hormone receptors but not peroxisome proliferative-activating receptors, farnesoid X receptor, liver X receptor, or several orphan nuclear receptors the ligands of which are unknown. FPP enhanced receptor-coactivator binding in vitro and in vivo, and elevation of FPP levels in cells by squalene synthetase or farnesyl transferase inhibitors leads to activation. The FPP effect was blocked by selective receptor antagonists, and in silico docking with 143 nuclear receptor ligand-binding domain structures revealed that FPP only docked with the agonist conformation of those receptors activated by FPP. Our results suggest that certain nuclear receptors maintain a common structural feature that may reflect an action of FPP on an ancient nuclear receptor or that FPP could function as a ligand for one of the many orphan nuclear receptors the ligands of which have not yet been identified. This finding also has potential interesting implications that may, in part, explain the pleotropic effects of statins as well as certain actions of farnesylation inhibitors in cells.  相似文献   

4.
5.
6.
7.
8.
The structure of the nuclear hormone receptors.   总被引:18,自引:0,他引:18  
R Kumar  E B Thompson 《Steroids》1999,64(5):310-319
  相似文献   

9.
10.
11.
12.
13.
Zhou D  Chen S 《Nucleic acids research》2001,29(19):3939-3948
PNRC2 (proline-rich nuclear receptor co-regulatory protein 2) was identified using mouse steroidogenic factor 1 (SF1) as bait in a yeast two-hybrid screening of a human mammary gland cDNA expression library. PNRC2 is an unusual coactivator in that it is the smallest coactivator identified so far, with a molecular weight of 16 kDa, and interacts with nuclear receptors using a proline-rich sequence. In yeast two-hybrid assays PNRC2 interacted with orphan receptors SF1 and estrogen receptor-related receptor α1 in a ligand-independent manner. PNRC2 was also found to interact with the ligand-binding domains of estrogen receptor, glucocorticoid receptor, progesterone receptor, thyroid receptor, retinoic acid receptor and retinoid X receptor in a ligand-dependent manner. A functional activation function 2 domain is required for nuclear receptors to interact with PNRC2. Using the yeast two-hybrid assay, the region amino acids 85–139 was found to be responsible for the interaction with nuclear receptors. This region contains an SH3 domain-binding motif (SEPPSPS) and an NR box-like sequence (LKTLL). A mutagenesis study has shown that the SH3 domain-binding motif is important for PNRC2 to interact with all the nuclear receptors tested. Our results reveal that PNRC2 has a structure and function similar to PNRC, a previously characterized coactivator. These two proteins represent a new type of nuclear receptor co-regulatory proteins.  相似文献   

14.
Although many co-activators have been identified for various nuclear receptors, relatively fewer co-repressors have been isolated and characterized. Here we report the identification of a novel testicular orphan nuclear receptor-4 (TR4)-associated protein (TRA16) that is mainly localized in the nucleus of cells as a repressor to suppress TR4-mediated transactivation. The suppression of TR4-mediated transactivation is selective because TRA16 shows only a slight influence on the transactivation of androgen receptor, glucocorticoid receptor, and progesterone receptor. Sequence analysis shows that TRA16 is a novel gene with 139 amino acids in an open reading frame with a molecular mass of 16 kDa, which did not match any published gene sequences. Mammalian two-hybrid system and co-immunoprecipitation assays both demonstrate that TRA16 can interact strongly with TR4. The electrophoretic mobility shift assay suggests that TRA16 may suppress TR4-mediated transactivation via decreased binding between the TR4 protein and the TR4 response element on the target gene(s). Furthermore, TRA16 can also block the interaction between TR4 and TR4 ligand-binding domain through interacting with TR4-DNA-binding and ligand-binding domains. These unique suppression mechanisms suggest that TRA16 may function as a novel repressor to selectively suppress the TR4-mediated transactivation.  相似文献   

15.
16.
17.
In classical endocrinology, receptors are molecules that bind a hormone or a ligand to transduce signal within a target cell. Later, however, many intracellular receptors have been discovered in mammals, which have not been shown to bind endogenous ligands and are now are referred as "orphan receptors." The orphan receptors share high degree of structural and functional homology with the classical nuclear receptors (NRs) and are now part of the NR superfamily and therefore referred as orphan nuclear receptors (ONRs). Interestingly, however, ONR members are not evolutionarily or functionally linked and they form a highly diverse group within the NR superfamily. In mammals, ONRs exhibit great functional diversity and majority of them are expressed in a tissue-specific fashion. In the past one decade, functional studies have revealed that they are mediators of multitude of crucial metabolic, developmental, reproductive, and immunological functions in mammals. Emerging studies also indicate the role of ONRs in the onset of several complex human diseases and hence they may be potential candidates for therapeutic drug targeting in the future.  相似文献   

18.
In classical endocrinology, receptors are molecules that bind a hormone or a ligand to transduce signal within a target cell. Later, however, many intracellular receptors have been discovered in mammals, which have not been shown to bind endogenous ligands and are now are referred as “orphan receptors.” The orphan receptors share high degree of structural and functional homology with the classical nuclear receptors (NRs) and are now part of the NR superfamily and therefore referred as orphan nuclear receptors (ONRs). Interestingly, however, ONR members are not evolutionarily or functionally linked and they form a highly diverse group within the NR superfamily. In mammals, ONRs exhibit great functional diversity and majority of them are expressed in a tissue-specific fashion. In the past one decade, functional studies have revealed that they are mediators of multitude of crucial metabolic, developmental, reproductive, and immunological functions in mammals. Emerging studies also indicate the role of ONRs in the onset of several complex human diseases and hence they may be potential candidates for therapeutic drug targeting in the future.  相似文献   

19.
Three-dimensional structure models of the ligand-binding domain of the ecdysone receptor of Heliothis virescens were built by the homology modeling technique from the crystal structures of nuclear receptors. Two models were created based both on known ligand-binding domain structures of the receptors with the highest sequence identity to the ecdysone receptor, and on those of steroid hormone receptors. The latter model, which was found to have better stereochemical quality and be in good agreement with the binding of the steroidal framework of the endogenous agonist 20-hydroxyecdysone, was used for docking studies. The docking of 20-hydroxyecdysone to the receptor model revealed that the ligand molecule can interact with the receptor in a similar manner to other steroid hormone-receptor complexes. The docking of a dibenzoylhydrazine agonist, chromafenozide, was performed based on the correspondences between the molecule and 20-dydroxyecdysone expected by molecular comparison. The interactions of the ligands with the receptor in the complexes modeled were investigated and found to be consistent with known structure-activity relationships.  相似文献   

20.
Abstract

The nuclear receptor Nurr1 (NR4A2) has been identified as a potential target for the treatment of Parkinson’s disease. In contrast to most other nuclear receptors, the X-ray crystal structure of the Nurr1 ligand-binding domain (LBD) lacks any ligand-binding pocket (LBP). However, NMR spectroscopy measurements have revealed that the known Nurr1 agonist docosahexaenoic acid (DHA) binds to a region within the LBD that corresponds to the classical NR ligand-binding pocket (LBP). In order to investigate the structural dynamics of the Nurr1 LBD and to study potential LBP formation, the conformational space of the receptor was sampled using a molecular dynamics (MD) simulation. Docking of DHA into 50,000 LBD structures extracted from the simulation revealed the existence of a transient LBP that is capable to fully harbor the compound. The location of the identified pocket overlaps with the ligand-binding site suggested by NMR experiments. Structural analysis of the protein-ligand complex showed that only modest structural rearrangements within the Nurr1 LBD are required for LBP formation. These findings may support structure-based drug discovery campaigns for the development of receptor-specific agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号