首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Butyrate, a short-chain fatty acid produced in the colon, induces cell cycle arrest, differentiation, and apoptosis in transformed cell lines. In this report, we study the effects of butyrate (BuA) on the growth of Ehrlich ascites tumor (EAT) cells in vivo. BuA, when injected intraperitoneally (i.p) into mice, inhibited proliferation of EAT cells. Further, induction of apoptosis in EAT cells was monitored by nuclear condensation, annexin-V staining, DNA fragmentation, and translocation of caspase-activated DNase into nucleus upon BuA-treatment. Ac-DEVD-CHO, a caspase-3 inhibitor, completely inhibited BuA-induced apoptosis, indicating that activation of caspase-3 mediates the apoptotic pathway in EAT cells. The proapoptotic effect of BuA also reflects on the antiangiogenic pathway in EAT cells. The antiangiogenic effect of BuA in vivo was demonstrated by the downregulation of the secretion of VEGF in EAT cells. CD31 immunohistochemical staining of peritoneum sections clearly indicated a potential angioinhibitory effect of BuA in EAT cells. These results suggest that BuA, besides regulating other fundamental cellular processes, is able to modulate the expression/secretion of the key angiogenic growth factor VEGF in EAT cells.  相似文献   

2.
U Knauf  H Bielka  M Gaestel 《FEBS letters》1992,309(3):297-302
hsp25 is a small, growth-related, mammalian stress protein which is highly accumulated in the stationary phase of Ehrlich ascites tumor in vivo. Ehrlich ascites cells cultivated in vitro under conditions of continuous exponential growth express hsp25 only at a low level. These cells were stably transfected with an eukaryotic expression vector carrying the coding sequence of the small heat-shock protein, hsp25, under control of the murine metallothionein promoter. The resulting cell lines (EAT II6 and EAT II8) exhibit constitutive over-expression of the small heat-shock protein, hsp25, which can be further increased by induction with cadmium. Both cell lines show increased thermoresistance. The in vitro proliferation rate of the transfected cell lines EAT II6 and EAT II8 is significantly decreased depending on the degree of cadmium-regulated over-expression of hsp25. Furthermore, a significant delay in Ehrlich ascites tumor growth in mice using the hsp25 over-expressing cells for primary inoculation could be demonstrated.  相似文献   

3.
Growth of rat intestinal crypt derived cells IEC-6 ceased when the key enzyme of cholesterol synthesis, hydroxymethylglutaryl-CoA reductase, was blocked by the competitive inhibitor mevinolin. This effect was reversed by the addition of mevalonolactone. LDL suppressed reductase activity as well as cholesterol synthesis from [14C]octanoate and stimulated acyl-CoA cholesterol acyltransferase, but failed to support cell growth despite rapid receptor mediated degradation even in the presence of low mevalonolactone concentrations. Inhibition of cholesterol esterification by Sandoz-Compound 58-035 enhanced cell growth in the presence of mevinolin, but did not promote proliferation in the additional presence of low-density lipoproteins. HDL3 but not HDL2 or tetranitromethane-modified HDL3 totally reversed the mevinolin induced inhibition of cell growth. This rescue by HDL3 was overcome by an increased dose of mevinolin. HDL3 derepressed reductase, stimulated cholesterol synthesis and reduced cholesterol esterification, but did not reverse the cholesterol synthesis inhibition by mevinolin. It is concluded that IEC-6 cells preferentially use endogenously synthesized cholesterol for membrane formation rather than low-density lipoprotein cholesterol. High-density lipoproteins appear to normalize cell growth in the presence of mevinolin by inhibition of cholesterol esterification and probably by inducing the formation of non sterol products of mevalonate.  相似文献   

4.
Alveolar type II (ATII) cells inhibit fibroblast proliferation in coculture by releasing or secreting a factor(s) that stimulates fibroblast production of prostaglandin E2 (PGE2). In the present study, we sought to determine the factors released from ATII cells that stimulate PGE2 production in fibroblasts. Exogenous addition of rat IL-1alpha to cultured lung fibroblasts induced PGE2 secretion in a dose-response manner. When fibroblasts were cocultured with rat ATII cells, IL-1alpha protein was detectable in ATII cells and in the coculture medium between days 8 and 12 of culture, correlating with the highest levels of PGE2. Furthermore, under coculture conditions, IL-1alpha gene expression increased in ATII cells (but not fibroblasts) compared with either cell cultured alone. In both mixed species (human fibroblasts-rat ATII cells) and same species cocultures (rat fibroblasts and ATII cells), PGE2 secretion was inhibited by the presence of IL-1 receptor antagonist (IL-1Ra) or selective neutralizing antibody directed against rat IL-1alpha (but not IL-1beta). Conditioned media from cocultures inhibited fibroblast proliferation, and this effect was abrogated by the addition of IL-1Ra. Addition of keratinocyte growth factor (KGF) resulted in an earlier increase in PGE2 secretion and fibroblast inhibition (day 8 of coculture). This effect was inhibited by indomethacin but was not altered by IL-1Ra. We conclude that in this coculture system, IL-1alpha secretion by ATII cells is one factor that stimulates PGE2 production by lung fibroblasts, thereby inhibiting fibroblast proliferation. In addition, these studies demonstrate that KGF enhances ATII cell PGE2 production through an IL-1alpha-independent pathway.  相似文献   

5.
Mesenchymal stromal cells (MSCs), also called mesenchymal stem cells, migrate and function as stromal cells in tumor tissues. The effects of MSCs on tumor growth are controversial. In this study, we showed that MSCs increase proliferation of tumor cells in vitro and promote tumor growth in vivo. We also further analyzed the mechanisms that underlie these effects. For use in in vitro and in vivo experiments, we established a bone marrow-derived mesenchymal stromal cell line from cells isolated in C57BL/6 mice. Effects of murine MSCs on tumor cell proliferation in vitro were analyzed in a coculture model with B16-LacZ cells. Both coculture with MSCs and treatment with MSC-conditioned media led to enhanced growth of B16-LacZ cells, although the magnitude of growth stimulation in cocultured cells was greater than that of cells treated with conditioned media. Co-injection of B16-LacZ cells and MSCs into syngeneic mice led to increased tumor size compared with injection of B16-LacZ cells alone. Identical experiments using Lewis lung carcinoma (LLC) cells instead of B16-LacZ cells yielded similar results. Consistent with a role for neovascularization in MSC-mediated tumor growth, tumor vessel area was greater in tumors resulting from co-injection of B16-LacZ cells or LLCs with MSCs than in tumors induced by injection of cancer cells alone. Co-injected MSCs directly supported the tumor vasculature by localizing close to vascular walls and by expressing an endothelial marker. Furthermore, secretion of leukemia inhibitory factor, macrophage colony-stimulating factor, macrophage inflammatory protein-2 and vascular endothelial growth factor was increased in cocultures of MSCs and B16-LacZ cells compared with B16-LacZ cells alone. Together, these results indicate that MSCs promote tumor growth both in vitro and in vivo and suggest that tumor promotion in vivo may be attributable in part to enhanced angiogenesis.  相似文献   

6.
The kinetics of the uptake of Fe(II)-histidinate, a known promoter of lipid peroxidation, into Ehrlich ascites tumor (EAT) cells and the intracellular binding of iron were studied in vitro. EAT cells (27.10(6)/ml) were incubated in Hanks' balanced salts solution at 37 degrees C for various time intervals in the presence of FeSO4 (1 mM) and L-histidine (10 mM). Total iron was determined by the 1,10-phenanthroline/ascorbate method and ferric iron by reaction with 5-sulfosalicylic acid; the difference was ascribed to ferrous iron. Total iron decreased rapidly in the medium (242 nmol within the first 10 min), and a corresponding increase of total iron (saturation value 376 nmol after 60 min) was determined within the cells, after the cellular proteins had been solubilized with 6 M urea. In the absence of EAT cells, Fe(II)-histidinate was readily oxidized to Fe(III)-histidinate by oxygen, but this reaction was strongly retarded by the tumor cells. The uptake of iron histidinate occurred in the oxidized state, while an uptake of ferrous iron could not be proven unambiguously. When EAT cells were saturated with iron, it was found that 93% of intracellular iron was bound to water-insoluble proteins and 7% was associated with soluble proteins, while no unbound iron was detectable by the method used. It was concluded that, despite the high uptake of total iron, only a very small portion of the intracellular iron was available as a redox catalyst for lipid peroxidation.  相似文献   

7.
The effect of implantation of Ehrlich ascites tumor (EAT) cells on creatine distribution was investigated. It was also studied how depletion of creatine by feeding creatine-analogue beta-guanidinopropionic acid (beta-GPA) affects the growth of EAT cells in mice. Enhanced mobilization of creatine from host tissues to EAT cells against a greater concentration gradient was observed. The creatine (but not creatinine) level in blood plasma was lowered to 22% of the normal value by beta-GPA feeding alone and assimilation of 14C-creatine into EAT cells was inhibited. The growth of EAT cells was significantly reduced and the duration of survival of mice after implantation of EAT cells was extended when the creatine concentration was decreased. A decrease in daily food consumption and the degree of muscle atrophy after implantation of EAT cells was less in beta-GPA than control groups. In the creatine-depleted mice, the rate of increase in total EAT cell number and the volume of abdominal ascites were approximately half of the control values, and more dead EAT cells were observed. These results suggest that supplementation of beta-GPA inhibits creatine transfer to EAT cells and reduces the growth of cancer cells.  相似文献   

8.
Hyperthermic treatment at 43 degrees C suppressed the growth of Ehrlich ascites tumor (EAT) cells in vitro. Incubation of EAT cells at 43 degrees C for as little as 1.5 h totally abolished the transplantability of the tumor. At the same time, the rate of cellular glucose uptake, the density of glucose transporter on the cells as well as the extent of thymidine, uridine and leucine incorporation were significantly reduced.  相似文献   

9.
In this study the antiproliferative effects of Paclitaxel (PAC), Epirubicin (EPI) and Tamoxifen (TAM) on growth kinetics of Ehrlich Ascites Tumor (EAT) cells were examined in culture. An estrogen-receptor-positive ER (+) hyperdiploid EAT cell line growing in vitro was also analysed in the present study. IC50 doses of PAC, EPI and TAM (12 microg/ml, 12 microg/ml and 2 microg/ml, respectively) were used. Cells were treated with the above doses for 0, 4, 8, 16, 24 and 32 hrs. At the end of these periods, living cell numbers were determined by collecting EAT cells in every group for growth study rate and for MTT assay. Therefore, the mitotic index was determined in the same experimental groups. The proliferation of EAT cells, inhibited by PAC, EPI and TAM concentrations was compared to control with increasing treatment time (4-32 hrs). Treatment of PAC, EPI and TAM alone for 24 hrs decreased the proliferation rate of EAT cells by 50% with respect to control. The inhibition of proliferation rate was higher in double drug treatment than that in single drug treatment with increased treatment time. In the treatment of three drugs applied for 32 hrs, this effect reached a maximum and proliferation rate decreased by 12% as compared to the (100%) control. In our studies, when the mitotic index parameter data were evaluated to determine which phase of the cell cycle was affected by PAC to cause the repression of cell reproduction, it was found that PAC exerted of its cytotoxic effect by causing cell accumulation at mitosis. The accumulation of the cells resulted in an increase in mitotic index values, which was an expected consequence of PAC treatment. It was observed that depending on the drug treatments, inhibition of proliferation rate and mitotic index in EAT cells were increased with respect to control, being with statistically significant occurrence (p < 0.01 - p < 0.001). As a result, concomitant treatment combined with hormonal therapy has given improved results compared with single treatment and PAC + EPI + TAM treatments had a maximum synergistic effect for 32 hrs (p < 0.001).  相似文献   

10.
A series of substituted benzophenone analogues, (2-aroyl-4-methylphenoxy)acetamides 4a-e, have been synthesized via three-step synthesis sequence beginning with the 2-hydroxybenzophenones 1a-e in excellent yield. 1a-e on reaction with ethyl chloroacetate afford ethyl (2-aroyl-4-methylphenoxy)acetates 2a-e which on alkaline hydrolysis afforded (2-aroyl-4-methylphenoxy)ethanoic acid 3a-e. Compounds 3a-e on condensation with p-chloroaniline furnished benzophenone analogues 4a-e. In the present report, we investigated the anti-tumor and proapoptotic effect of benzophenones in Ehrlich ascites tumor (EAT) cells. Treatment of benzophenones in vivo resulted in inhibition of proliferation of EAT cells and ascites formation. Further, we demonstrate that the induction of apoptosis in EAT cells is mediated through activation of caspase-3. These results suggest a further possible clinical application of these synthetic compounds as potent anti-tumor and proapoptotic compounds.  相似文献   

11.
Insulin-like growth factor (IGF)-I is up-regulated in pancreatic cancer tissues. Pancreatic cancer cell lines were analyzed in serum-free media as a model of the fibrous tissues that these cells often invade. Pancreatic cancer surgical specimens were immunostained with anti-IGF-I receptor (IGF-IR)β antibody. The growth of pancreatic cancer cells in serum-free media was also analyzed. Cell lysates were analyzed for protein by western blot analysis. Cells cultured in the presence of picropodophyllin (PPP), LY294002, or PD98059, were subjected to cell proliferation and scratch assays. In addition, BrdU uptake and apoptosis were analyzed in these cells. IGF-IRβ was detected in pancreatic cancer cells invading fibrous tissues. NOR-P1 grew most rapidly in serum-free media. The concentrations of IGF-I and IGF-II in the media were higher in NOR-P1 than the other cell lines. Cell proliferation in NOR-P1 cells was enhanced by IGF-I or IGF-II treatment more than in MIA-Paca2 or PK-1 cells. PPP, LY294002, and PD98059 suppressed proliferation and motility of NOR-P1 cells and inhibited BrdU uptake, while PPP induced apoptosis. IGF-IRβ may be a potential therapeutic target to inhibit invasion of pancreatic cancer.  相似文献   

12.
The cell cycle distribution of in vitro cultured Ehrlich ascites tumor (EAT) cells was analysed by pulse-cytophotometry to characterize the growth cessation observed under anaerobic conditions. DNA histograms provided evidence that in the absence of oxygen EAT cells accumulate in the G1 and early S phase of the cell cycle while in the presence of oxygen an increase in G2 was observed during 24h culture period. Cellular recovery from anaerobiosis was observed soon after transfer of the cells into fresh aerobic culture medium but occurred slowly if the cells were only resupplied with air. Cell cycle analyses as well as (14C)-thymidine incorporation suggest considerable synchronization results from the introduction of anaerobiosis.  相似文献   

13.
14.
Mitochondrial glutathione depletion by glutamine in growing tumor cells   总被引:3,自引:0,他引:3  
The effect of L-glutamine (Gln) on mitochondrial glutathione (mtGSH) levels in tumor cells was studied in vivo in Ehrlich ascites tumor (EAT)-bearing mice. Tumor growth was similar in mice fed a Gln-enriched diet (GED; where 30% of the total dietary nitrogen was from Gln) or a nutritionally complete elemental diet (SD). As compared with non-tumor-bearing mice, tumor growth caused a decrease of blood Gln levels in mice fed an SD but not in those fed a GED. Tumor cells in mice fed a GED showed higher glutaminase and lower Gln synthetase activities than did cells isolated from mice fed an SD. Cytosolic glutamate concentration was 2-fold higher in tumor cells from mice fed a GED ( approximately 4 mM) than in those fed an SD. This increase in glutamate content inhibited GSH uptake by tumor mitochondria and led to a selective depletion of mitochondrial GSH (mtGSH) content (not found in mitochondria of normal cells such as lymphocytes or hepatocytes) to approximately 57% of the level found in tumor mitochondria of mice fed an SD. In tumor cells of mice fed a GED, 6-diazo-5-norleucine- or L-glutamate-gamma-hydrazine-induced inhibition of glutaminase activity decreased cytosolic glutamate content and restored GSH uptake by mitochondria to the rate found in EAT cells of mice fed an SD. The partial loss of mtGSH elicited by Gln did not affect generation of reactive oxygen intermediates (ROIs) or mitochondrial functions (e.g., intracellular peroxide levels, O(2)(-)(*) generation, mitochondrial membrane potential, mitochondrial size, adenosine triphosphate and adenosine diphosphate contents, and oxygen consumption were found similar in tumor cells isolated from mice fed an SD or a GED); however, mitochondrial production ROIs upon TNF-alpha stimulation was increased. Our results demonstrate that glutamate derived from glutamine promotes an inhibition of GSH transport into mitochondria, which may render tumor cells more susceptible to oxidative stress-induced mediators.  相似文献   

15.
Several studies indicate that cholesterol esterification is deregulated in cancers. The present study aimed to characterize the role of cholesterol esterification in proliferation and invasion of two tumor cells expressing an activated cholecystokinin 2 receptor (CCK2R). A significant increase in cholesterol esterification and activity of Acyl-CoA:cholesterol acyltransferase (ACAT) was measured in tumor cells expressing a constitutively activated oncogenic mutant of the CCK2R (CCK2R-E151A cells) compared with nontumor cells expressing the wild-type CCK2R (CCK2R-WT cells). Inhibition of cholesteryl ester formation and ACAT activity by Sah58-035, an inhibitor of ACAT, decreased by 34% and 73% CCK2R-E151A cell growth and invasion. Sustained activation of CCK2R-WT cells by gastrin increased cholesteryl ester production while addition of cholesteryl oleate to the culture medium of CCK2R-WT cells increased cell proliferation and invasion to a level close to that of CCK2R-E151A cells. In U87 glioma cells, a model of autocrine growth stimulation of the CCK2R, inhibition of cholesterol esterification and ACAT activity by Sah58-035 and two selective antagonists of the CCK2R significantly reduced cell proliferation and invasion. In both models, cholesteryl ester formation was found dependent on protein kinase zeta/ extracellular signal-related kinase 1/2 (PKCζ/ERK1/2) activation. These results show that signaling through ACAT/cholesterol esterification is a novel pathway for the CCK2R that contributes to tumor cell proliferation and invasion.  相似文献   

16.
In vitro cultured Ehrlich ascites tumour (EAT) cells were used because of the ease of their manipulation under different levels of hypoxia. They were used to clarify further the complex mechanism of oxygen-dependent cell proliferation. On reducing the oxygen concentration from 20% to lower levels (1-7%) an increase in the length of the population doubling time with concomitant reductions in protein, RNA and DNA content of cultures were observed. The incorporation of [14C]HCO3- into the RNA fraction of cells by de novo biosynthesis of uridine monophosphate (UMP) was reduced proportionally to the microenvironmental O2 tension. Uptake of this labelled precursor by cells in the presence of N-phosphonoacetyl-L-aspartate was found to be similarly inhibited. To correlate the reduction of cell growth under hypoxia with the functional pyrimidine supply, hypoxic cells were cultured in the presence of a balanced mixture of deoxynucleosides and/or uridine (100 microM deoxycytidine, 10 microM deoxyadenosine, 10 microM deoxyguanosine, 100 microM uridine). Above 3% O2 in the protective atmosphere, no improvement of growth parameters by the exogenous pyrimidinenucleotide precursors was obtained, whereas these compounds had a positive influence below this level. The increase in cell number was raised to about 60% of that of control cultures (20% O2) irrespective of the oxygen tension. In addition, when above 3% O2 the incorporation of HCO3- into RNA was comparable to that of controls, indicating that the pyrimidine de novo pathway is not a limiting factor in RNA biosynthesis. In conclusion, whereas at suboptimal O2 levels (5-7%) no correlation between pyrimidine metabolism and reduction of proliferation rate appears to exist, at low O2 concentrations (less than 3%) the rate of orotate/UMP production seems to be an important factor in the growth cessation of EAT cells; at critical O2 tensions (less than 1%) the lack of pyrimidine-deoxynucleosides substantially reduces cell cycle progression.  相似文献   

17.
In the present study, four novel dienone cyclopropoxy curcumin analogs 1a–4a were synthesized by nucleophillic substitution reaction with cyclopropyl bromide. The tumor inhibitory and anti-angiogenic effects of the synthetic compounds were studied on mouse Ehrlich ascites tumor (EAT) in vivo. The compounds 1a–4a increased the life span (% ILS) of EAT bearing mice with corresponding significant reduction in ascites volume and cell number and induced apoptotic bodies in EAT cells. Anti-angiogenic studies of the compounds demonstrated significant reduction of microvessel density (MVD) in the peritoneum wall sections of mice and induced avascular zone in CAM model. Our findings demonstrate that the tumor growth inhibitory effects of synthetic dienone cyclopropoxy curcumin analogs 1a–4a could be mediated by promoting apoptosis and inhibiting tumor angiogenesis. However, the compounds need to be explored further to assess its clinical relevance.  相似文献   

18.
Summary In the mammary gland, mesenchymal-epithelial interactions are of paramount importance during normal and tumoral developments. We have studied the paracrine growth regulation of a variety of breast epithelial cells in coculture with normal or pathological breast fibroblasts. Two models of coculture were used in which the two cell types were seeded and grown, either together in microchamber slides or separated by a microporous membrane. Under these two conditions, all fibroblasts were shown to stimulate the proliferation of the hormono-responsive breast carcinoma MCF-7 cell line, suggesting that cell contacts were not indispensable for the paracrine stimulation of MCF-7 cell growth by fibroblasts. Moreover, in the Transwell coculture system, the proliferation of a variety of other breast carcinoma cells (MDA-MB231, T47D, and BT-20) was also stimulated by fibroblasts. However, the amplitude of the proliferative response seemed to be dependent on the carcinoma cell line considered. Moreover, the proliferative response of normal mammary epithelial cells to the presence of fibroblasts was shown to be significantly higher than the tumor cell response. The nature of the tissue of fibroblast origin, normal or pathological, did not influence the growth response of the epithelial cells. In this study, we thus demonstrate that fibroblasts are able to stimulate the proliferation of normal and carcinoma cells through paracrine exchange mechanisms. We also conclude that the target epithelial cell phenotype will essentially determine the extent of the proliferative response.  相似文献   

19.
Bile salt-stimulated cholesterol esterase is synthesized in the pancreatic acinar cells and is released into the intestinal lumen where it catalyzes cholesterol absorption. In the current study, Caco-2 cells were used as an in vitro model to study the interaction between the pancreatic cholesterol esterase with intestinal cells. Results showed that addition of increasing concentrations of cholesterol esterase in the incubation medium increased the uptake of micellar cholesteryl oleate by Caco-2 cells. The cholesterol esterase also increased the cellular uptake of the nonhydrolyzable cholesteryl linoleoyl ether. However, maximum uptake of the cholesteryl ether analog was 50% of that for cholesteryl oleate. The initial interaction of cholesterol esterase with Caco-2 cells was mediated by binding of the protein to a low affinity and high capacity binding site on the cell surface. Cholesterol esterase bound to the cell surface could be internalized via a monensin-sensitive mechanism. The cholesterol esterase taken up by the cells had a short residence time and was either degraded or was rapidly re-secreted from the cells. Chloroquine had no effect on the degradation or re-secretion of cholesterol esterase by Caco-2 cells, indicating that lysosomes were not involved with these processes. The cholesterol esterase taken up by the cells was not available to mediate further cholesterol uptake. These results indicated that the bile salt-stimulated cholesterol esterase secreted from pancreas could facilitate intestinal lipid absorption only transiently. The data suggest that the regulation of cholesterol esterase synthesis and secretion by the pancreas may be important for regulation of cholesterol absorption.  相似文献   

20.
A system is described which uses microcarrier culture techniques for the co-cultivation of different cell types without direct contact between cell populations. In co-cultivation, arterial endothelial cells induced proliferation in > 90% of quiescent homologous arterial smooth muscle cells in the absence of serum-derived growth factors. The microcarrier coculture system allows investigation of potent local humoral interactions between vascular cells in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号