首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extensive activation of poly(ADP-ribose) polymerase-1 (PARP-1) by DNA damage is a major cause of caspase-independent cell death in ischemia and inflammation. Here we show that NAD(+) depletion and mitochondrial permeability transition (MPT) are sequential and necessary steps in PARP-1-mediated cell death. Cultured mouse astrocytes were treated with the cytotoxic concentrations of N-methyl-N'-nitro-N-nitrosoguanidine or 3-morpholinosydnonimine to induce DNA damage and PARP-1 activation. The resulting cell death was preceded by NAD(+) depletion, mitochondrial membrane depolarization, and MPT. Sub-micromolar concentrations of cyclosporin A blocked MPT and cell death, suggesting that MPT is a necessary step linking PARP-1 activation to cell death. In astrocytes, extracellular NAD(+) can raise intracellular NAD(+) concentrations. To determine whether NAD(+) depletion is necessary for PARP-1-induced MPT, NAD(+) was restored to near-normal levels after PARP-1 activation. Restoration of NAD(+) enabled the recovery of mitochondrial membrane potential and blocked both MPT and cell death. Furthermore, both cyclosporin A and NAD(+) blocked translocation of the apoptosis-inducing factor from mitochondria to nuclei, a step previously shown necessary for PARP-1-induced cell death. These results suggest that NAD(+) depletion and MPT are necessary intermediary steps linking PARP-1 activation to AIF translocation and cell death.  相似文献   

2.
After genotoxic stress poly(ADP-ribose) polymerase-1 (PARP-1) can be hyperactivated, causing (ADP-ribosyl)ation of nuclear proteins (including itself), resulting in NAD(+) and ATP depletion and cell death. Mechanisms of PARP-1-mediated cell death and downstream proteolysis remain enigmatic. beta-lapachone (beta-lap) is the first chemotherapeutic agent to elicit a Ca(2+)-mediated cell death by PARP-1 hyperactivation at clinically relevant doses in cancer cells expressing elevated NAD(P)H:quinone oxidoreductase 1 (NQO1) levels. Beta-lap induces the generation of NQO1-dependent reactive oxygen species (ROS), DNA breaks, and triggers Ca(2+)-dependent gamma-H2AX formation and PARP-1 hyperactivation. Subsequent NAD(+) and ATP losses suppress DNA repair and cause cell death. Reduction of PARP-1 activity or Ca(2+) chelation protects cells. Interestingly, Ca(2+) chelation abrogates hydrogen peroxide (H(2)O(2)), but not N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced PARP-1 hyperactivation and cell death. Thus, Ca(2+) appears to be an important co-factor in PARP-1 hyperactivation after ROS-induced DNA damage, which alters cellular metabolism and DNA repair.  相似文献   

3.
The human genome is exposed to oxidative/genotoxic stress by several endogenous and exogenous compounds. These events evoke DNA damage and activate poly(ADP-ribose) polymerase-1 (PARP-1), the key enzyme involved in DNA repair. The massive stress and over-activation of this DNA-bound enzyme can be responsible for an energy crisis and neuronal death. The last data indicated that product of PARP-1, i.e. poly(ADP-ribose) (PAR), acts as a signalling molecule and plays a significant role in nucleus-mitochondria cross-talk. PAR translocated to the mitochondria can be involved in mitochondrial permeability, the release of an apoptosis-inducing factor (AIF). Its translocation into the nucleus leads to chromatin condensation, fragmentation and cell death. The exact mechanism of this novel death pathway has not yet fully been understood.  相似文献   

4.
Zhou Y  Feng X  Koh DW 《Biochemistry》2011,50(14):2850-2859
We previously demonstrated that the absence of poly(ADP-ribose) glycohydrolase (PARG) led to increased cell death following DNA-damaging treatments. Here, we investigated cell death pathways following UV treatment. Decreased amounts of PARG-null embryonic trophoblast stem (TS) cells were observed following doses of 10-100 J/m2 as compared to wild-type cells. In wild-type cells, caspase-cleaved poly(ADP-ribose) polymerase-1 (PARP-1) and activated caspase-3 were detected 12-24 h after UV treatment. Surprisingly, both were detected at decreased levels only after 24 h in PARG-null TS cells, indicating a decreased level and delayed presence of caspase-mediated events. Further, a time- and dose-dependent accumulation of poly(ADP-ribose) (PAR) levels after UV was observed in PARG-null TS cells and not in wild-type cells. Determination of the levels of nicotinamide adenine dinucleotide (NAD+), the substrate for PAR synthesis and a coenzyme in cellular redox reactions, demonstrated a UV dose-dependent decrease in the level of NAD+ in wild-type cells, while NAD+ levels in PARG-null TS cells remained at higher levels. This indicates no depletion of NAD+ in PARG-null TS cells following increased levels of PAR. Lastly, cell death mediated by apoptosis-inducing factor (AIF) was analyzed because of its dependence on increased PAR levels. The results demonstrate nuclear AIF translocation only in PARG-null TS cells, which demonstrates the presence of AIF-mediated cell death. Herein, we provide compelling evidence that the absence of PARG leads to decreased caspase-3 activity and the specific activation of AIF-mediated cell death. Therefore, the absence of PARG may provide a strategy for specifically inducing an alternative apoptotic pathway.  相似文献   

5.
Loss-of-function mutations in angiogenin (ANG) gene were discovered in amyotrophic lateral sclerosis (ALS) patients and ANG has been shown to prevent neuronal death both in vitro and in vivo. The neuro-protective activity of ANG was brought about partially by inhibiting stress-induced apoptosis. ANG attenuates both the extrinsic and the intrinsic apoptotic signals by activating Nf-κb-mediated cell survival pathway and Bcl-2-mediated anti-apoptotic pathway. Here we report that ANG inhibits nuclear translocation of apoptosis inducing factor (AIF), an important cell death-executing molecule known to play a dominant role in neurodegenerative diseases. ANG inhibits serum withdrawal-induced apoptosis by attenuating a series of Bcl-2-dependent events including caspase-3 activation, poly ADP-ribose polymerase-1 (PARP-1) cleavage, and AIF nuclear translocation.  相似文献   

6.
7.
Deadly Conversations: Nuclear-Mitochondrial Cross-Talk   总被引:12,自引:0,他引:12  
Neuronal damage following stroke or neurodegenerative diseases is thought to stem in part from overexcitation of N -methyl-D-aspartate (NMDA) receptors by glutamate. NMDA receptors triggered neurotoxicity is mediated in large part by activation of neuronal nitric oxide synthase (nNOS) and production of nitric oxide (NO). Simultaneous production of superoxide anion in mitochondria provides a permissive environment for the formation of peroxynitrite (ONOO-). Peroxynitrite damages DNA leading to strand breaks and activation of poly(ADP-ribose) polymerase-1 (PARP-1). This signal cascade plays a key role in NMDA excitotoxicity, and experimental models of stroke and Parkinson's disease. The mechanisms of PARP-1-mediated neuronal death are just being revealed. While decrements in ATP and NAD are readily observed following PARP activation, it is not yet clear whether loss of ATP and NAD contribute to the neuronal death cascade or are simply a biochemical marker for PARP-1 activation. Apoptosis-inducing factor (AIF) is normally localized to mitochondria but following PARP-1 activation, AIF translocates to the nucleus triggering chromatin condensation, DNA fragmentation and nuclear shrinkage. Additionally, phosphatidylserine is exposed and at a later time point cytochrome c is released and caspase-3 is activated. In the setting of excitotoxic neuronal death, AIF toxicity is caspase independent. These observations are consistent with reports of biochemical features of apoptosis in neuronal injury models but modest to no protection by caspase inhibitors. It is likely that AIF is the effector of the morphologic and biochemical events and is the commitment point to neuronal cell death, events that occur prior to caspase activation, thus accounting for the limited effects of caspase inhibitors. There exists significant cross talk between the nucleus and mitochondria, ultimately resulting in neuronal cell death. In exploiting this pathway for the development of new therapeutics, it will be important to block AIF translocation from the mitochondria to the nucleus without impairing important physiological functions of AIF in the mitochondria.  相似文献   

8.
Kainate is an effective excitotoxic agent to lesion spinal cord networks, thus providing an interesting model for investigating basic mechanisms of spinal cord injury. The present study aimed at revealing the type and timecourse of cell death in rat neonatal spinal cord preparations in vitro exposed to 1 h excitotoxic insult with kainate. Substantial numbers of neurons rather than glia showed pyknosis (albeit without necrosis and with minimal apoptosis occurrence) already apparent on kainate washout and peaking 12 h later with dissimilar spinal topography. Neurons appeared to suffer chiefly through a process involving anucleolytic pyknosis mediated by strong activation of poly(ADP-ribose)polymerase-1 (PARP-1) that generated poly ADP-ribose and led to nuclear translocation of the apoptotic inducing factor (AIF) with DNA damage. This process had the hallmarks of parthanatos-type neuronal death. The PARP-1 inhibitor 6-5(H)-phenathridione applied immediately after kainate washout significantly prevented pyknosis in a dose-dependent fashion and inhibited PARP-1-dependent nuclear AIF translocation. Conversely, the caspase-3 inhibitor II was ineffective against neuronal damage. Our results suggest that excitotoxicity of spinal networks was mainly directed to neurons and mediated by PARP-1 death pathways, indicating this mechanism as a potential target for neuroprotection to limit the acute damage to the local circuitry.  相似文献   

9.
Poly(ADP-ribose) polymerase-1 (PARP-1) mediates neuronal cell death in a variety of pathological conditions involving severe DNA damage. Poly(ADP-ribose) (PAR) polymer is a product synthesized by PARP-1. Previous studies suggest that PAR polymer heralds mitochondrial apoptosis-inducing factor (AIF) release and thereby, signals neuronal cell death. However, the details of the effects of PAR polymer on mitochondria remain to be elucidated. Here we report the effects of PAR polymer on mitochondria in cells in situ and isolated brain mitochondria in vitro. We found that PAR polymer causes depolarization of mitochondrial membrane potential and opening of the mitochondrial permeability transition pore early after injury. Furthermore, PAR polymer specifically induces AIF release, but not cytochrome c from isolated brain mitochondria. These data suggest PAR polymer as an endogenous mitochondrial toxin and will further our understanding of the PARP-1-dependent neuronal cell death paradigm.  相似文献   

10.
Poly(ADP-ribose) polymerase-1 (PARP-1) hyperactivation-induced necrosis has been implicated in several pathophysiological conditions. Although mitochondrial dysfunction and apoptosis-inducing factor translocation from the mitochondria to the nucleus have been suggested to play very important roles in PARP-1-mediated cell death, the signaling events downstream of PARP-1 activation in initiating mitochondria dysfunction are not clear. Here we used the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, a potent PARP-1 activator, to study PARP-1 activation-mediated cell death. We found, based on genetic knockouts and pharmacological inhibition, that c-Jun N-terminal kinase (JNK), especially JNK1, but not the other groups of mitogen-activated protein kinase, is required for PARP-1-induced mitochondrial dysfunction, apoptosis-inducing factor translocation, and subsequent cell death. We reveal that receptor-interacting protein 1 (RIP1) and tumor necrosis factor receptor-associated factor 2 (TRAF2), are upstream of JNK in PARP-1 hyperactivated cells, because PARP-1-induced JNK activation was attenuated in RIP1-/- and TRAF2-/- mouse embryonic fibroblast cells. Consistently, knockouts of RIP1 and TRAF2 caused a resistance to PARP-1-induced cell death. Therefore, our study uncovers that RIP1, TRAF2, and JNK comprise a pathway to mediate the signaling from PARP-1 overactivation to mitochondrial dysfunction.  相似文献   

11.
Massive poly(ADP-ribose) formation by poly(ADP-ribose) polymerase-1 (PARP-1) triggers NAD depletion and cell death. These events have been invariantly related to cellular energy failure due to ATP shortage. The latter occurs because of both ATP consumption for NAD resynthesis and impairment of mitochondrial ATP formation caused by an increase of the AMP/ADP ratio. ATP depletion is therefore thought to be an inevitable consequence of NAD loss and a hallmark of PARP-1 activation. Here, we challenge this scenario by showing that PARP-1 hyperactivation in cells cultured in the absence of glucose (Glu cells) is followed by NAD depletion and an unexpected PARP-1 activity-dependent ATP increase. We found increased ADP content in resting Glu cells, a condition that counteracts the increase of the AMP/ADP ratio during hyperpoly(ADP-ribosyl)ation and preserves mitochondrial coupling. We also show that the increase of ATP in Glu cells is due to adenylate kinase activity, transforming AMP into ADP which, in turn, is converted into ATP by coupled mitochondria. Interestingly, PARP-1-dependent mitochondrial release of apoptosis-inducing factor (AIF) and cytochrome complex (Cyt c) is reduced in Glu cells, even though cell death eventually occurs. Overall, the present study identifies basal ADP content and adenylate kinase as key determinants of bioenergetics during PARP-1 hyperactivation and unequivocally demonstrates that ATP loss is not metabolically related to NAD depletion.  相似文献   

12.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that is involved in DNA repair and activated by DNA damage. When activated, PARP-1 consumes NAD(+) to form ADP-ribose polymers on acceptor proteins. Extensive activation of PARP-1 leads to glycolytic blockade, energy failure, and cell death. These events have been postulated to result from NAD(+) depletion. Here, we used primary astrocyte cultures to directly test this proposal, utilizing the endogenous expression of connexin-43 hemichannels by astrocytes to manipulate intracellular NAD(+) concentrations. Activation of PARP-1 with the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) produced NAD(+) depletion, glycolytic blockade, and cell death. Cultures incubated in high (10mM) extracellular concentrations of NAD(+) after MNNG exposure showed normalization of intracellular NAD(+) concentrations. Repletion of intracellular NAD(+) in this manner completely restored glycolytic capacity and prevented cell death. These results suggest that NAD(+) depletion is the cause of glycolytic failure after PARP-1 activation.  相似文献   

13.
14.
Preconditioning-induced ischemic tolerance is well documented in the brain, but cell-specific responses and mechanisms require further elucidation. The aim of this study was to develop an in vitro model of ischemic tolerance in human brain microvascular endothelial cells (HBMECs) and to examine the roles of phosphatidylinositol 3-kinase (PI3-kinase)/Akt and the inhibitor-of- apoptosis protein, survivin, in the ability of hypoxic preconditioning (HP) to protect endothelium from apoptotic cell death. Cultured HBMECs were subjected to HP, followed 16 h later by complete oxygen and glucose deprivation (OGD) for 8 h; cell viability was quantified at 20 h of reoxygenation (RO) by the 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide assay. HBMECs were examined at various times after HP or OGD/RO using immunoblotting and confocal laser scanning immunofluorescence microscopy for appearance of apoptotic markers and expression of phosphorylated (p)-Akt and p-survivin. Causal evidence for the participation of the PI3-kinase/Akt pathway in HP-induced protection and p-survivin upregulation was assessed by the PI3-kinase inhibitor LY-294002. HP significantly reduced OGD/RO-induced injury by 50% and also significantly reduced the OGD-induced translocation of apoptosis-inducing factor (AIF) from mitochondria to nucleus and the concomitant cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). PI3-kinase inhibition blocked HP-induced increases in Akt phosphorylation, reversed the effects of HP on OGD-induced AIF translocation and PARP-1 cleavage, blocked HP-induced survivin phosphorylation, and ultimately attenuated HP-induced protection of HBMECs from OGD. Thus HP promotes an antiapoptotic phenotype in HBMECs, in part by activating survivin via the PI3-kinase/Akt pathway. Survivin and other phosphorylation products of p-Akt may be therapeutic targets to protect cerebrovascular endothelium from apoptotic injury following cerebral ischemia.  相似文献   

15.
Poly(ADP-ribose) polymerase-1 (PARP-1) safeguards genomic integrity by limiting sister chromatid exchanges. Overstimulation of PARP-1 by extensive DNA damage, however, can result in cell death, as prolonged PARP-1 activation depletes NAD(+), a substrate, and elevates nicotinamide, a product. The decline of NAD(+) and the rise of nicotinamide may downregulate the activity of Sir2, the NAD(+)-dependent deacetylases, because deacetylation by Sir2 is dependent on high concentration of NAD(+) and inhibited by physiologic level of nicotinamide. The Sir2 deacetylase family has been implicated in mediating gene silencing, longevity and genome stability. It is conceivable that poly(ADP-ribosyl)ation by PARP-1, which is induced by DNA damage, could modulate protein deacetylation by Sir2 via the NAD(+)/nicotinamide connection. The possible linkage of the two ancient pathways that mediate broad biological activities may spell profound evolutionary roles for the conserved PARP-1 and Sir2 gene families in multicellular eukaryotes.  相似文献   

16.
Alkylating DNA damage induces a necrotic type of programmed cell death through the poly(ADP-ribose) polymerases (PARP) and apoptosis-inducing factor (AIF). Following PARP activation, AIF is released from mitochondria and translocates to the nucleus, where it causes chromatin condensation and DNA fragmentation. By employing a large panel of gene knockout cells, we identified and describe here two essential molecular links between PARP and AIF: calpains and Bax. Alkylating DNA damage initiated a p53-independent form of death involving PARP-1 but not PARP-2. Once activated, PARP-1 mediated mitochondrial AIF release and necrosis through a mechanism requiring calpains but not cathepsins or caspases. Importantly, single ablation of the proapoptotic Bcl-2 family member Bax, but not Bak, prevented both AIF release and alkylating DNA damage-induced death. Thus, Bax is indispensable for this type of necrosis. Our data also revealed that Bcl-2 regulates N-methyl-N'-nitro-N'-nitrosoguanidine-induced necrosis. Finally, we established the molecular ordering of PARP-1, calpains, Bax, and AIF activation, and we showed that AIF downregulation confers resistance to alkylating DNA damage-induced necrosis. Our data shed new light on the mechanisms regulating AIF-dependent necrosis and support the notion that, like apoptosis, necrosis could be a highly regulated cell death program.  相似文献   

17.
To obtain further information on time course and mechanisms of cell death after poly(ADP-ribose) polymerase-1 (PARP-1) hyperactivation, we used HeLa cells exposed for 1 h to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. This treatment activated PARP-1 and caused a rapid drop of cellular NAD(H) and ATP contents, culminating 8-12 h later in cell death. PARP-1 antagonists fully prevented nucleotide depletion and death. Interestingly, in the early 60 min after challenge with N-methyl-N'-nitro-N-nitrosoguanidine, mitochondrial membrane potential and superoxide production significantly increased, whereas cellular ADP contents decreased. Again, these events were prevented by PARP-1 inhibitors, suggesting that PARP-1 hyperactivity leads to mitochondrial state 4 respiration. Mitochondrial membrane potential collapsed at later time points (3 h), when mitochondria released apoptosis-inducing factor and cytochrome c. Using immunocytochemistry and targeted luciferase transfection, we found that, despite an exclusive localization of PARP-1 and poly(ADP-ribose) in the nucleus, ATP levels first decreased in mitochondria and then in the cytoplasm of cells undergoing PARP-1 activation. PARP-1 inhibitors rescued ATP (but not NAD(H) levels) in cells undergoing hyper-poly(ADP-ribosyl)ation. Glycolysis played a central role in the energy recovery, whereas mitochondria consumed ATP in the early recovery phase and produced ATP in the late phase after PARP-1 inhibition, further indicating that nuclear poly(ADP-ribosyl)ation rapidly modulates mitochondrial functioning. Together, our data provide evidence for rapid nucleus-mitochondria cross-talk during hyper-poly(ADP-ribosyl)ation-dependent cell death.  相似文献   

18.
19.
Apoptosis-inducing factor (AIF) is critical for poly(ADP-ribose) polymerase-1 (PARP-1)-dependent cell death (parthanatos). The molecular mechanism of mitochondrial AIF release to the nucleus remains obscure, although a possible role of calpain I has been suggested. Here we show that calpain is not required for mitochondrial AIF release in parthanatos. Although calpain I cleaved recombinant AIF in a cell-free system in intact cells under conditions where endogenous calpain was activated by either NMDA or N -methyl- N '-nitro- N -nitrosoguanidine (MNNG) administration, AIF was not cleaved, and it was released from mitochondria to the nucleus in its 62-kDa uncleaved form. Moreover, NMDA administration under conditions that failed to activate calpain still robustly induced AIF nuclear translocation. Inhibition of calpain with calpastatin or genetic knockout of the regulatory subunit of calpain failed to prevent NMDA- or MNNG-induced AIF nuclear translocation and subsequent cell death, respectively, which was markedly prevented by the PARP-1 inhibitor, 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-iso-quinolinone. Our study clearly shows that calpain activation is not required for AIF release during parthanatos, suggesting that other mechanisms rather than calpain are involved in mitochondrial AIF release in parthanatos.  相似文献   

20.
Protein modification by ADP-ribose polymers is a common regulatory mechanism in eukaryotic cells and is involved in several aspects of brain physiology and physiopathology, including neurotransmission, memory formation, neurotoxicity, ageing and age-associated diseases. Here we show age-related misregulation of poly(ADP-ribose) synthesis in rat cerebellum as revealed by: (i) reduced poly(ADP-ribose) polymerase-1 (PARP-1) activation in response to enzymatic DNA cleavage, (ii) altered protein poly(ADP-ribosyl)ation profiles in isolated nuclei, and (iii) cell type-specific loss of poly(ADP-ribosyl)ation capacity in granule cell layer and Purkinje cells in vivo. In particular, although PARP-1 could be detected in virtually all granule cells, only a fraction of them appeared to be actively engaged in poly(ADP-ribose) synthesis and this fraction was reduced in old rat cerebellum. NAD(+), quantified in tissue homogenates, was essentially the same in the cerebellum of young and old rats suggesting that in vivo factors other than PARP-1 content and/or NAD(+) levels may be responsible for the age-associated lowering of poly(ADP-ribose) synthesis. Moreover, PARP-1 expression was substantially down-regulated in Purkinje cells of senescent rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号