首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to optimize the criteria for the BRCA1 and BRCA2 gene testing and to improve oncogenetic counseling in the Stockholm region. Screening for inherited breast cancer genes is laborious and a majority of tested samples turn out to be negative. The frequencies of mutations in the BRCA1 and BRCA2 genes differ across populations. Between 1997 and 2000, 160 families with breast and/or ovarian cancer were counseled and screened for mutations in the two genes. Twenty-five BRCA1 and two BRCA2 disease-causing mutations were found. Various factors associated with the probability of finding a BRCA1 mutation in the families were estimated. Age of onset in different generations and other malignancies were also studied. Families from our region in which both breast and ovarian cancer occur were likely to carry a BRCA1 mutation (34%). In breast-only cancer families, mutations were found only in those with very early onset. All breast- only cancer families with a mutation had at least one case of onset before 36 years of age and a young median age of onset (<43 years). Other malignancies than breast and ovarian cancers did not segregate in the BRCA1 families and surveillance for other malignancies is not needed, in general. Decreasing age of onset with successive generations was common and must be taken into account when surveillance options are considered.  相似文献   

2.
Genetic heterogeneity in hereditary breast cancer: role of BRCA1 and BRCA2.   总被引:7,自引:4,他引:3  
The common hereditary forms of breast cancer have been largely attributed to the inheritance of mutations in the BRCA1 or BRCA2 genes. However, it is not yet clear what proportion of hereditary breast cancer is explained by BRCA1 and BRCA2 or by some other unidentified susceptibility gene(s). We describe the proportion of hereditary breast cancer explained by BRCA1 or BRCA2 in a sample of North American hereditary breast cancers and assess the evidence for additional susceptibility genes that may confer hereditary breast or ovarian cancer risk. Twenty-three families were identified through two high-risk breast cancer research programs. Genetic analysis was undertaken to establish linkage between the breast or ovarian cancer cases and markers on chromosomes 17q (BRCA1) and 13q (BRCA2). Mutation analysis in the BRCA1 and BRCA2 genes was also undertaken in all families. The pattern of hereditary cancer in 14 (61%) of the 23 families studied was attributed to BRCA1 by a combination of linkage and mutation analyses. No families were attributed to BRCA2. Five families (22%) provided evidence against linkage to both BRCA1 and BRCA2. No BRCA1 or BRCA2 mutations were detected in these five families. The BRCA1 or BRCA2 status of four families (17%) could not be determined. BRCA1 and BRCA2 probably explain the majority of hereditary breast cancer that exists in the North American population. However, one or more additional genes may yet be found that explain some proportion of hereditary breast cancer.  相似文献   

3.
A low proportion of BRCA2 mutations in Finnish breast cancer families.   总被引:4,自引:1,他引:3  
One hundred breast cancer families were identified at the Helsinki University Central Hospital in Finland and were screened for germ-line mutations in the coding regions and splice boundaries of the BRCA2 gene. Eight families (8%) were found to carry five different mutations, all of which are predicted to prematurely truncate the protein product. These BRCA2 families have early-onset breast cancer (mean and median age = 49 years), with four of the eight families including ovarian cancer but with no families including male breast cancer. A wide spectrum of other cancers also is seen in these families. Three mutations were identified in more than one family, and haplotype analysis in the families suggested a common founder for each recurrent mutation. One recurrent mutation, 999del5, previously has been noted as a common mutation in Iceland. The relationship between the Icelandic 999del5 mutation and the Finnish 999del5 mutation was explored by comparison of families from both countries. A common haplotype covering a minimal region intragenic to the BRCA2 gene was shared between the Icelandic and the Finnish mutation carriers.  相似文献   

4.
A total of 18 families with multiple cases of breast cancer were identified from southern Taiwan, and 5 of these families were found to carry cancer-associated germline mutations in the BRCA1 and BRCA2 genes. One novel cryptic splicing mutation of the BRCA1 gene, found in two unrelated families, was shown to be a deletion of 10 bp near the branch site in intron 7. This mutation causes an insertion of 59 nucleotides derived from intron 7 and results in a frameshift, leading to premature translational termination of BRCA1 mRNA in exon 8. Deletions of 2670delC, 3073delT and 6696-7delTC in the BRCA2 gene were found in three other breast cancer families. All three deletions are predicted to generate frameshifts and to result in the premature termination of BRCA2 protein translation. Several genetic polymorphisms in both BRCA1 and BRCA2 genes were also detected in this investigation. Received: 28 September 1998 / Accepted: 20 November 1998  相似文献   

5.
In order to evaluate the role of inherited BRCA2 mutations in American families--particularly the appearance in America of European founder mutations--the BRCA2 coding sequence, 5' UTR, and 3' UTR were screened in 22 Caucasian American kindreds with four or more cases of breast or ovarian cancer. Six mutations were found that cause a premature-termination codon; four of them have been reported elsewhere, and two are novel. In the four families with previously seen mutations, the distinct lineages at high risk of cancer were of Dutch, German, Irish, and Ashkenazi Jewish ancestry; mutations in Europe reflect these ancestries. The families with novel mutations were Puerto Rican Hispanic (exon 9 deletion 995delCAAAT) and Ashkenazi Jewish (exon 11 deletion 6425delTT). Among female BRCA2-mutation carriers, risks of breast cancer were 32% by age 50 years, 67% by age 70 years, and 80% by age 90 years, yielding a lifetime risk similar to that for BRCA1 but an older distribution of ages at onset. BRCA2 families also included multiple cases of cancers of the male breast (six cases), ovary (three cases), fallopian tube (two cases), pancreas (three cases), bladder (two cases), and prostate (two cases). Among 17 Ashkenazi Jewish families with four or more breast or ovarian cancers, 9 families (including 3 with ovarian cancer and 1 with male breast cancer) carried none of the three ancient mutations in BRCA1 or BRCA2. To date, both BRCA2 and BRCA1 have been screened by SSCA, supplemented by the protein-truncation test, in 48 families with four or more breast or ovarian cancers. Mutations have been detected in BRCA1 in 33 families, in BRCA2 in 6 families, and in neither gene in 9 families, suggesting both the probable cryptic nature of some mutations and the likelihood of at least one other BRCA gene.  相似文献   

6.
The contribution of BRCA1 and BRCA2 to inherited breast cancer was assessed by linkage and mutation analysis in 237 families, each with at least four cases of breast cancer, collected by the Breast Cancer Linkage Consortium. Families were included without regard to the occurrence of ovarian or other cancers. Overall, disease was linked to BRCA1 in an estimated 52% of families, to BRCA2 in 32% of families, and to neither gene in 16% (95% confidence interval [CI] 6%-28%), suggesting other predisposition genes. The majority (81%) of the breast-ovarian cancer families were due to BRCA1, with most others (14%) due to BRCA2. Conversely, the majority of families with male and female breast cancer were due to BRCA2 (76%). The largest proportion (67%) of families due to other genes was found in families with four or five cases of female breast cancer only. These estimates were not substantially affected either by changing the assumed penetrance model for BRCA1 or by including or excluding BRCA1 mutation data. Among those families with disease due to BRCA1 that were tested by one of the standard screening methods, mutations were detected in the coding sequence or splice sites in an estimated 63% (95% CI 51%-77%). The estimated sensitivity was identical for direct sequencing and other techniques. The penetrance of BRCA2 was estimated by maximizing the LOD score in BRCA2-mutation families, over all possible penetrance functions. The estimated cumulative risk of breast cancer reached 28% (95% CI 9%-44%) by age 50 years and 84% (95% CI 43%-95%) by age 70 years. The corresponding ovarian cancer risks were 0.4% (95% CI 0%-1%) by age 50 years and 27% (95% CI 0%-47%) by age 70 years. The lifetime risk of breast cancer appears similar to the risk in BRCA1 carriers, but there was some suggestion of a lower risk in BRCA2 carriers <50 years of age.  相似文献   

7.
The mutation frequency of BRCA1 and BRCA2 in women with breast cancer varies according to family history, age at diagnosis and ethnicity. The contribution of BRCA1 and BRCA2 mutations in breast cancer populations, unselected for age and family history, has been examined in several studies reporting mutation frequencies between 1% and 12% by screening methods, population sizes, and to what extent the gene/s were screened differed in the studies. We wanted to clarify the proportion of breast cancer attributable to mutations in BRCA1 in an unselected breast cancer population from the Stockholm region. All incident breast cancer patients treated surgically in a 19-month period were eligible for the study and 70% (489/696) participated. Exon 11 of BRCA1 was screened for mutations using the protein truncation test, and the mutation frequency was estimated from that. In previous studies on high-risk families from Stockholm, more than 70% of the mutations were detected in exon 11. Two mutations were found, both in patients with a family history or their own medical history of ovarian cancer, giving a mutation frequency in exon 11 of 0.4% and an estimated BRCA1 mutation frequency of <1%. Mutations in BRCA1 in unselected breast cancer cases in our region are rare and likely to be found only in high-risk families. Our BRCA1 prevalence is the lowest of all studies on unselected breast cancer patients, probably reflecting the comparatively low rates detected also in high-risk breast cancer families from the region.  相似文献   

8.
Previous studies of high-risk breast cancer families have proposed that two major breast cancer-susceptibility genes, BRCA1 and BRCA2, may account for at least two-thirds of all hereditary breast cancer. We have screened index cases from 106 Scandinavian (mainly southern Swedish) breast cancer and breast-ovarian cancer families for germ-line mutations in all coding exons of the BRCA1 and BRCA2 genes, using the protein-truncation test, SSCP analysis, or direct sequencing. A total of 24 families exhibited 11 different BRCA1 mutations, whereas 11 different BRCA2 mutations were detected in 12 families, of which 3 contained cases of male breast cancer. One BRCA2 mutation, 4486delG, was found in two families of the present study and, in a separate study, also in breast tumors from three unrelated males with unknown family history, suggesting that at least one BRCA2 founder mutation exists in the Scandinavian population. We report 1 novel BRCA1 mutation, eight additional cases of 4 BRCA1 mutations described elsewhere, and 11 novel BRCA2 mutations (9 frameshift deletions and 2 nonsense mutations), of which all are predicted to cause premature truncation of the translated products. The relatively low frequency of BRCA1 and BRCA2 mutations in the present study could be explained by insufficient screening sensitivity to the location of mutations in uncharacterized regulatory regions, the analysis of phenocopies, or, most likely, within predisposed families, additional uncharacterized BRCA genes.  相似文献   

9.
Women with mutations in the breast cancer genes BRCA1 or BRCA2 have an increased lifetime risk of developing breast, ovarian and other BRCA-associated cancers. However, the number of detected germline mutations in families with hereditary breast and ovarian cancer (HBOC) syndrome is lower than expected based upon genetic linkage data. Undetected deleterious mutations in the BRCA genes in some high-risk families are due to the presence of intragenic rearrangements such as deletions, duplications or insertions that span whole exons. This article reviews the molecular aspects of BRCA1 and BRCA2 rearrangements and their frequency among different populations. An overview of the techniques used to screen for large rearrangements in BRCA1 and BRCA2 is also presented. The detection of rearrangements in BRCA genes, especially BRCA1, offers a promising outlook for mutation screening in clinical practice, particularly in HBOC families that test negative for a germline mutation assessed by traditional methods.  相似文献   

10.
Germ-line changes in the cancer-predisposition gene BRCA2 are found in a small proportion of breast cancers. Mutations in the BRCA2 gene have been studied mainly in families with high risk of breast cancer in females, and male breast cancer also has been associated with BRCA2 mutations. The importance of germ-line BRCA2 mutations in individuals without a family history of breast cancer is unknown. The same BRCA2 mutation has been found in 16/21 Icelandic breast cancer families, indicating a founder effect. We determined the frequency of this mutation, 999del5, in 1,182 Icelanders, comprising 520 randomly selected individuals from the population and a series of 632 female breast cancer patients (61.4% of patients diagnosed during the study period) and all male breast cancer patients diagnosed during the past 40 years. We detected the 999del5 germ-line mutation in 0.6% of the population, in 7.7% of female breast cancer patients, and in 40% of males with breast cancer. The mutation was strongly associated with onset of female breast cancer at age <50 years, but its penetrance and expression are varied. A number of cancers other than breast cancer were found to be increased in relatives of mutation carriers, including those with prostate and pancreatic cancer. Furthermore, germ-line BRCA2 mutation can be present without a strong family history of breast cancer. Comparison of the age at onset for mother/daughter pairs with the 999del5 mutation and breast cancer indicates that age at onset is decreasing in the younger generation. Increase in breast cancer incidence and lower age at onset suggest a possible contributing environmental factor.  相似文献   

11.

Background

The PALB2 gene, also known as FANCN, forms a bond and co-localizes with BRCA2 in DNA repair. Germline mutations in PALB2 have been identified in approximately 1% of familial breast cancer and 3–4% of familial pancreatic cancer. The goal of this study was to determine the prevalence of PALB2 mutations in a population of BRCA1/BRCA2 negative breast cancer patients selected from either a personal or family history of pancreatic cancer.

Methods

132 non-BRCA1/BRCA2 breast/ovarian cancer families with at least one pancreatic cancer case were included in the study. PALB2 mutational analysis was performed by direct sequencing of all coding exons and intron/exon boundaries, as well as multiplex ligation-dependent probe amplification.

Results

Two PALB2 truncating mutations, the c.1653T>A (p.Tyr551Stop) previously reported, and c.3362del (p.Gly1121ValfsX3) which is a novel frameshift mutation, were identified. Moreover, several PALB2 variants were detected; some of them were predicted as pathological by bioinformatic analysis. Considering truncating mutations, the prevalence rate of our population of BRCA1/2-negative breast cancer patients with pancreatic cancer is 1.5%.

Conclusions

The prevalence rate of PALB2 mutations in non-BRCA1/BRCA2 breast/ovarian cancer families, selected from either a personal or family pancreatic cancer history, is similar to that previously described for unselected breast/ovarian cancer families. Future research directed towards identifying other gene(s) involved in the development of breast/pancreatic cancer families is required.  相似文献   

12.
The 5' end of the breast and ovarian cancer-susceptibility gene BRCA1 has previously been shown to lie within a duplicated region of chromosome band 17q21. The duplicated region contains BRCA1 exons 1A, 1B, and 2 and their surrounding introns; as a result, a BRCA1 pseudogene (PsiBRCA1) lies upstream of BRCA1. However, the sequence of this segment remained essentially unknown. We needed this information to investigate at the nucleotide level the germline deletions comprising BRCA1 exons 1A, 1B, and 2, which we had previously identified in two families with breast and ovarian cancer. We have analyzed the recently deposited nucleotide sequence of the 1.0-Mb region upstream of BRCA1. We found that 14 blocks of homology between the tandemly repeated copies (cumulative length = 11.5 kb) show similarity of 77%-92%. Gaps between blocks result from insertion or deletion, usually of repetitive elements. BRCA1 exon 1A and PsiBRCA1 exon 1A are 44.5 kb apart. In the two families with breast and ovarian cancer mentioned above, distinct homologous recombination events occurred between intron 2 of BRCA1 and intron 2 of PsiBRCA1, leading to 37-kb deletions. Breakpoint junctions were found to be located at close but distinct sites within segments that are 98% identical. The mutant alleles lack the BRCA1 promoter and harbor a chimeric gene consisting of PsiBRCA1 exons 1A, 1B, and 2, which lacks the initiation codon, fused to BRCA1 exons 3-24. Thus, we report a new mutational mechanism for the BRCA1 gene. The presence of a large region homologous to BRCA1 on the same chromosome appears to constitute a hot spot for recombination.  相似文献   

13.
We have identified four mutations in each of the breast cancer-susceptibility genes, BRCA1 and BRCA2, in French Canadian breast cancer and breast/ovarian cancer families from Quebec. To identify founder effects, we examined independently ascertained French Canadian cancer families for the distribution of these eight mutations. Mutations were found in 41 of 97 families. Six of eight mutations were observed at least twice. The BRCA1 C4446T mutation was the most common mutation found, followed by the BRCA2 8765delAG mutation. Together, these mutations were found in 28 of 41 families identified to have a mutation. The odds of detection of any of the four BRCA1 mutations was 18.7x greater if one or more cases of ovarian cancer were also present in the family. The odds of detection of any of the four BRCA2 mutations was 5.3x greater if there were at least five cases of breast cancer in the family. Interestingly, the presence of a breast cancer case <36 years of age was strongly predictive of the presence of any of the eight mutations screened. Carriers of the same mutation, from different families, shared similar haplotypes, indicating that the mutant alleles were likely to be identical by descent for a mutation in the founder population. The identification of common BRCA1 and BRCA2 mutations will facilitate carrier detection in French Canadian breast cancer and breast/ovarian cancer families.  相似文献   

14.
We have undertaken a hospital-based study, to identify possible BRCA1 and BRCA2 founder mutations in the Polish population. The study group consisted of 66 Polish families with cancer who have at least three related females affected with breast or ovarian cancer and who had cancer diagnosed, in at least one of the three affected females, at age <50 years. A total of 26 families had both breast and ovarian cancers, 4 families had ovarian cancers only, and 36 families had breast cancers only. Genomic DNA was prepared from the peripheral blood leukocytes of at least one affected woman from each family. The entire coding region of BRCA1 and BRCA2 was screened for the presence of germline mutations, by use of SSCP followed by direct sequencing of observed variants. Mutations were found in 35 (53%) of the 66 families studied. All but one of the mutations were detected within the BRCA1 gene. BRCA1 abnormalities were identified in all four families with ovarian cancer only, in 67% of 27 families with both breast and ovarian cancer, and in 34% of 35 families with breast cancer only. The single family with a BRCA2 mutation had the breast-ovarian cancer syndrome. Seven distinct mutations were identified; five of these occurred in two or more families. In total, recurrent mutations were found in 33 (94%) of the 35 families with detected mutations. Three BRCA1 abnormalities-5382insC, C61G, and 4153delA-accounted for 51%, 20%, and 11% of the identified mutations, respectively.  相似文献   

15.
Studies of families with breast cancer have indicated that male carriers of BRCA2 mutations are at increased risk of prostate cancer, particularly at an early age. To evaluate the contribution of BRCA2 mutations to early-onset prostate cancer, we screened the complete coding sequence of BRCA2 for germline mutations, in 263 men with diagnoses of prostate cancer who were 相似文献   

16.
17.
Mutation analysis of BRCA1 and BRCA2 in a male breast cancer population.   总被引:12,自引:6,他引:6  
A population-based series of 54 male breast cancer cases from Southern California were analyzed for germ-line mutations in the inherited breast/ovarian cancer genes, BRCA1 and BRCA2. Nine (17%) of the patients had a family history of breast and/or ovarian cancer in at least one first-degree relative. A further seven (13%) of the patients reported breast/ovarian cancer in at least one second-degree relative and in no first-degree relatives. No germ-line BRCA1 mutations were found. Two male breast cancer patients (4% of the total) were found to carry novel truncating mutations in the BRCA2 gene. Only one of the two male breast cancer patients carrying a BRCA2 mutation had a family history of cancer, with one case of ovarian cancer in a first-degree relative. The remaining eight cases (89%) of male breast cancer with a family history of breast/ovarian cancer in first-degree relatives remain unaccounted for by mutations in either the BRCA1 gene or the BRCA2 gene.  相似文献   

18.
19.
20.
Many missense variants identified in BRCA1 and BRCA2, two genes responsible for the majority of hereditary breast and ovarian cancer, are of unclear clinical significance. Characterizing the significance of such variants is important for medical management of patients in whom they are identified. The aim of this study was to characterize eight of the most common reported missense mutations in BRCA1 and BRCA2 occurring in patients tested for hereditary risk of breast and ovarian cancers. The prevalence of each variant in a control population, co-segregation of the variant with cancer within families, location of the variant within the gene, the nature of the amino acid substitution and conservation of the wild-type amino acid among species were considered. In a control population, the BRCA1 variants M1652I, R1347G, and S1512I, were each observed at a frequency of 4.08%, 2.04%, and 2.04%, respectively, and the BRCA2 variants A2951T, V2728I, and D1420Y, were seen at 1.02%, 0.68%, and 0.34%, respectively. Although the BRCA2 variants T598A and R2034C were not seen in this group of controls, other clinical and published observations indicate that these variants are not deleterious. Based on epidemiological and biological criteria, we therefore conclude that the BRCA1 missense mutations R1347G, S1512I and M1652I, and the BRCA2 missense mutations T598A, D1420Y, R2034C, V2728I, and A2951T, are not deleterious mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号