首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Src-family kinases, known to participate in signaling pathways of a variety of surface receptors, are localized to the cytoplasmic side of the plasma membrane through lipid modification. We show here that Lyn, a member of the Src-family kinases, is biosynthetically transported to the plasma membrane via the Golgi pool of caveolin along the secretory pathway. The trafficking of Lyn from the Golgi apparatus to the plasma membrane is inhibited by deletion of the kinase domain or Csk-induced "closed conformation" but not by kinase inactivation. Four residues (Asp346 and Glu353 on alphaE helix, and Asp498 and Asp499 on alphaI helix) present in the C-lobe of the kinase domain, which can be exposed to the molecular surface through an "open conformation," are identified as being involved in export of Lyn from the Golgi apparatus toward the plasma membrane but not targeting to the Golgi apparatus. Thus, the kinase domain of Lyn plays a role in Lyn trafficking besides catalysis of substrate phosphorylation.  相似文献   

2.
The first step in immunoreceptor signaling is represented by ligand-dependent receptor aggregation, followed by receptor phosphorylation mediated by tyrosine kinases of the Src family. Recently, sphingolipid- and cholesterol-rich plasma membrane microdomains, called lipid rafts, have been identified and proposed to function as platforms where signal transduction molecules may interact with the aggregated immunoreceptors. Here we show that aggregation of the receptors with high affinity for immunoglobulin E (FcepsilonRI) in mast cells is accompanied by a co-redistribution of the Src family kinase Lyn. The co-redistribution requires Lyn dual fatty acylation, Src homology 2 (SH2) and/or SH3 domains, and Lyn kinase activity, in cis or in trans. Palmitoylation site-mutated Lyn, which is anchored to the plasma membrane but exhibits reduced sublocalization into lipid rafts, initiates the tyrosine phosphorylation of FcepsilonRI subunits, Syk protein tyrosine kinase, and the linker for activation of T cells, along with an increase in the concentration of intracellular Ca(2+). However, Lyn mutated in both the palmitoylation and myristoylation sites does not anchor to the plasma membrane and is incapable of initiating FcepsilonRI phosphorylation and early signaling events. These data, together with our finding that a constitutively tyrosine-phosphorylated FcepsilonRI does not exhibit an increased association with lipid rafts, suggest that FcepsilonRI phosphorylation and early activation events can be initiated outside of lipid rafts.  相似文献   

3.
BCR signaling regulates the activities and fates of B cells. BCR signaling encompasses two feedback loops emanating from Lyn and Fyn, which are Src family protein tyrosine kinases (SFKs). Positive feedback arises from SFK-mediated trans phosphorylation of BCR and receptor-bound Lyn and Fyn, which increases the kinase activities of Lyn and Fyn. Negative feedback arises from SFK-mediated cis phosphorylation of the transmembrane adapter protein PAG1, which recruits the cytosolic protein tyrosine kinase Csk to the plasma membrane, where it acts to decrease the kinase activities of Lyn and Fyn. To study the effects of the positive and negative feedback loops on the dynamical stability of BCR signaling and the relative contributions of Lyn and Fyn to BCR signaling, we consider in this study a rule-based model for early events in BCR signaling that encompasses membrane-proximal interactions of six proteins, as follows: BCR, Lyn, Fyn, Csk, PAG1, and Syk, a cytosolic protein tyrosine kinase that is activated as a result of SFK-mediated phosphorylation of BCR. The model is consistent with known effects of Lyn and Fyn deletions. We find that BCR signaling can generate a single pulse or oscillations of Syk activation depending on the strength of Ag signal and the relative levels of Lyn and Fyn. We also show that bistability can arise in Lyn- or Csk-deficient cells.  相似文献   

4.
Cellular membranes, which can serve as scaffolds for signal transduction, dynamically change their characteristics upon cell detachment. Src family kinases undergo post-translational lipid modification and are involved in a wide range of signaling events at the plasma membrane, such as cell proliferation, cell adhesion, and survival. Previously, we showed the differential membrane distributions among the members of Src family kinases by sucrose density gradient fractionation. However, little is known about the regulation of the membrane distribution of Src family kinases upon cell detachment. Here, we show that cell detachment shifts the main peak of the membrane distribution of Lyn, a member of Src family kinase, from the low density to the high density membrane fractions and enhances the kinase activity of Lyn. The change in Lyn distribution upon cell detachment involves both dynamin activity and a decrease in membrane cholesterol. Cell detachment activates Lyn through decreased membrane cholesterol levels during a change in its membrane distribution. Furthermore, cholesterol incorporation decreases Lyn activity and reduces the viability of suspension cells. These results suggest that cell detachment-induced Lyn activation through the change in the membrane distribution of Lyn plays an important role in survival of suspension cells.  相似文献   

5.
In this study, we evaluated the signaling ability of SIGNR1 in murine macrophage-like RAW264.7 cells that stably expressed FLAG-tagged SIGNR1 (SIGNR1-FLAG). Cross-linking of SIGNR1-FLAG expressed on the cells by an anti-FLAG antibody induced JNK phosphorylation without induction of phosphorylation of ERK1/2 and p38 MAP kinase, and led to phosphorylations of Src family kinases (SFKs) and Akt. The SIGNR1-FLAG molecules in the cells were found in lipid raft-enriched membrane fractions, and the tyrosine kinases Lyn, Hck, and Fgr co-precipitated with SIGNR1-FLAG in the lipid raft fractions. The antibody-induced JNK phosphorylation was inhibited by inhibitors of SFKs and tyrosine kinases. Furthermore, cross-linking of SIGNR1 led to production of TNF-α, and the JNK inhibitor inhibited the antibody-induced TNF-α production. These results show that cross-linking of SIGNR1 triggers phosphorylation of SFKs, which leads to activation of the JNK pathway and induction of TNF-α production in macrophage-like RAW264.7 cells.  相似文献   

6.
7.
The molecular adaptor Grb14 binds in vitro to the activated insulin receptor (IR) and inhibits IR signaling. In this study, we have used rat liver subcellular fractionation to analyze in vivo insulin effects on Grb14 compartmentalization and IR phosphorylation and activity. In control rats, Grb14 was recovered mainly in microsomal and cytosolic fractions, but was also detectable at low levels in plasma membrane and Golgi/endosome fractions. Insulin injection led to a rapid and dose-dependent increase in Grb14 content, first in the plasma membrane fraction, and then in the Golgi/endosome fraction, which paralleled the increase in IR beta-subunit tyrosine phosphorylation. Upon sustained in vivo IR tyrosine phosphorylation induced by high-affinity insulin analogs, in vitro IR dephosphorylation by endogenous phosphatases, and in vivo phosphorylation of the IR induced by injection of bisperoxo(1,10 phenanthroline)oxovanadate, a phosphotyrosine phosphatase inhibitor, we observed a striking correlation between IR phosphorylation state and Grb14 content in both the plasma membrane and Golgi/endosome fractions. In addition, coimmunoprecipitation experiments provided evidence that Grb14 was associated with phosphorylated IR beta-subunit in these fractions. Altogether, these data support a model whereby insulin stimulates the recruitment of endogenous Grb14 to the activated IR at the plasma membrane, and induces internalization of the Grb14-IR complex in endosomes. Removal of Grb14 from fractions of insulin-treated rats by KCl treatment led to an increase of in vivo insulin-stimulated IR tyrosine kinase activity, indicating that endogenous Grb14 exerts a negative feedback control on IR catalytic activity. This study thus demonstrates that Grb14 is a physiological regulator of liver insulin signaling.  相似文献   

8.
The C-type lectin-like receptor CLEC-2 signals via phosphorylation of a single cytoplasmic YXXL sequence known as a hem-immunoreceptor tyrosine-based activation motif (hemITAM). In this study, we show that phosphorylation of CLEC-2 by the snake toxin rhodocytin is abolished in the absence of the tyrosine kinase Syk but is not altered in the absence of the major platelet Src family kinases, Fyn, Lyn, and Src, or the tyrosine phosphatase CD148, which regulates the basal activity of Src family kinases. Further, phosphorylation of CLEC-2 by rhodocytin is not altered in the presence of the Src family kinase inhibitor PP2, even though PLCγ2 phosphorylation and platelet activation are abolished. A similar dependence of phosphorylation of CLEC-2 on Syk is also seen in response to stimulation by an IgG mAb to CLEC-2, although interestingly CLEC-2 phosphorylation is also reduced in the absence of Lyn. These results provide the first definitive evidence that Syk mediates phosphorylation of the CLEC-2 hemITAM receptor with Src family kinases playing a critical role further downstream through the regulation of Syk and other effector proteins, providing a new paradigm in signaling by YXXL-containing receptors.  相似文献   

9.
Recent data indicate that phagocytosis mediated by FcgammaRs is controlled by the Src and Syk families of protein tyrosine kinases. In this study, we demonstrate a sequential involvement of Lyn and Syk in the phagocytosis of IgG-coated particles. The particles isolated at the stage of their binding to FcgammaRs (4 degrees C) were accompanied by high amounts of Lyn, in addition to the signaling gamma-chain of FcgammaRs. Simultaneously, the particle binding induced rapid tyrosine phosphorylation of numerous proteins. During synchronized internalization of the particles induced by shifting the cell to 37 degrees C, Syk kinase and Src homology 2-containing tyrosine phosphatase-1 (SHP-1) were associated with the formed phagosomes. At this step, most of the proteins were dephosphorylated, although some underwent further tyrosine phosphorylation. Quantitative immunoelectron microscopy studies confirmed that Lyn accumulated under the plasma membrane beneath the bound particles. High amounts of the gamma-chain and tyrosine-phosphorylated proteins were also observed under the bound particles. When the particles were internalized, the gamma-chain was still detected in the region of the phagosomes, while amounts of Lyn were markedly reduced. In contrast, the vicinity of the phagosomes was heavily decorated with anti-Syk and anti-SHP-1 Abs. The local level of protein tyrosine phosphorylation was reduced. The data indicate that the accumulation of Lyn during the binding of IgG-coated particles to FcgammaRs correlated with strong tyrosine phosphorylation of numerous proteins, suggesting an initiating role for Lyn in protein phosphorylation at the onset of the phagocytosis. Syk kinase and SHP-1 phosphatase are mainly engaged at the stage of particle internalization.  相似文献   

10.
We have demonstrated earlier that lysophosphatidic acid (LPA)-induced interleukin-8 (IL-8) secretion is regulated by protein kinase Cdelta (PKCdelta)-dependent NF-kappaB activation in human bronchial epithelial cells (HBEpCs). Here we provide evidence for signaling pathways that regulate LPA-mediated transactivation of epidermal growth factor receptor (EGFR) and the role of cross-talk between G-protein-coupled receptors and receptor-tyrosine kinases in IL-8 secretion in HBEpCs. Treatment of HBEpCs with LPA stimulated tyrosine phosphorylation of EGFR, which was attenuated by matrix metalloproteinase (MMP) inhibitor (GM6001), heparin binding (HB)-EGF inhibitor (CRM 197), and HB-EGF neutralizing antibody. Overexpression of dominant negative PKCdelta or pretreatment with a PKCdelta inhibitor (rottlerin) or Src kinase family inhibitor (PP2) partially blocked LPA-induced MMP activation, proHB-EGF shedding, and EGFR tyrosine phosphorylation. Down-regulation of Lyn kinase, but not Src kinase, by specific small interfering RNA mitigated LPA-induced MMP activation, proHB-EGF shedding, and EGFR phosphorylation. In addition, overexpression of dominant negative PKCdelta blocked LPA-induced phosphorylation and translocation of Lyn kinase to the plasma membrane. Furthermore, down-regulation of EGFR by EGFR small interfering RNA or pretreatment of cells with EGFR inhibitors AG1478 and PD158780 almost completely blocked LPA-dependent EGFR phosphorylation and partially attenuated IL-8 secretion, respectively. These results demonstrate that LPA-induced IL-8 secretion is partly dependent on EGFR transactivation regulated by PKCdelta-dependent activation of Lyn kinase and MMPs and proHB-EGF shedding, suggesting a novel mechanism of cross-talk and interaction between G-protein-coupled receptors and receptor-tyrosine kinases in HBEpCs.  相似文献   

11.
Analysis of protein phosphorylation in highly purified rat brain mitochondria revealed the presence of several alkali-stable phosphoproteins whose phosphorylation markedly increases upon treatment with peroxovanadate and Mn(2+), a property indicating tyrosine phosphorylation. These include three prominent bands, with apparent sizes of 50, 60, and 75 kDa, which are detectable by anti-phosphotyrosine. Tyrosine phosphorylation disappears when mitochondria are treated with PP2, an inhibitor of the Src kinase family, suggesting the presence of members of this family in rat brain mitochondria. Immunoblotting and immunoprecipitation assays of mitochondrial lysates confirmed the presence of Fyn, Src and Lyn kinases, as well as Csk, a protein kinase which negatively controls the activity of the Src kinase family. Results show that tyrosine-phosphorylated proteins are membrane-bound and that they are located on the inner surface of the outer membrane and/or the external surface of the inner membrane. Instead, Src tyrosine kinases are mainly located in the intermembrane space - in particular, as revealed by immunogold experiments for Lyn kinase, in the cristal lumen. Rat brain mitochondria were also found to possess a marked level of tyrosine phosphatase activity, strongly inhibited by peroxovanadate.  相似文献   

12.
Toll-like receptors (TLRs) recognize molecular patterns preferentially expressed by pathogens. In endosomes, TLR9 is activated by unmethylated bacterial DNA, resulting in proinflammatory cytokine secretion via the adaptor protein MyD88. We demonstrate that CpG oligonucleotides activate a TLR9-independent pathway initiated by two Src family kinases, Hck and Lyn, which trigger a tyrosine phosphorylation–mediated signaling cascade. This cascade induces actin cytoskeleton reorganization, resulting in cell spreading, adhesion, and motility. CpG-induced actin polymerization originates at the plasma membrane, rather than in endosomes. Chloroquine, an inhibitor of CpG-triggered cytokine secretion, blocked TLR9/MyD88-dependent cytokine secretion as expected but failed to inhibit CpG-induced Src family kinase activation and its dependent cellular responses. Knock down of Src family kinase expression or the use of specific kinase inhibitors blocked MyD88-dependent signaling and cytokine secretion, providing evidence that tyrosine phosphorylation is both CpG induced and an upstream requirement for the engagement of TLR9. The Src family pathway intersects the TLR9–MyD88 pathway by promoting the tyrosine phosphorylation of TLR9 and the recruitment of Syk to this receptor.  相似文献   

13.
The plasma membrane contains ordered lipid domains, commonly called lipid rafts, enriched in cholesterol, sphingolipids, and certain signaling proteins. Lipid rafts play a structural role in signal initiation by the high affinity receptor for IgE. Cross-linking of IgE-receptor complexes by antigen causes their coalescence with lipid rafts, where they are phosphorylated by the Src family tyrosine kinase, Lyn. To understand how lipid rafts participate in functional coupling between Lyn and FcepsilonRI, we investigated whether the lipid raft environment influences the specific activity of Lyn. We used differential detergent solubility and sucrose gradient fractionation to isolate Lyn from raft and nonraft regions of the plasma membrane in the presence or absence of tyrosine phosphatase inhibitors. We show that Lyn recovered from lipid rafts has a substantially higher specific activity than Lyn from nonraft environments. Furthermore, this higher specific activity correlates with increased tyrosine phosphorylation at the active site loop of the kinase domain. Based on these results, we propose that lipid rafts exclude a phosphatase that negatively regulates Lyn kinase activity by constitutive dephosphorylation of the kinase domain tyrosine residue of Lyn. In this model, cross-linking of FcepsilonRI promotes its proximity to active Lyn in a lipid raft environment.  相似文献   

14.
In B cells, two classes of protein tyrosine kinases (PTKs), the Src family of PTKs (Lyn, Fyn, Lck, and Blk) and non-Src family of PTKs (Syk), are known to be involved in signal transduction induced by the stimulation of the B-cell antigen receptor (BCR). Previous studies using Lyn-negative chicken B-cell clones revealed that Lyn is necessary for transduction of signals through the BCR. The kinase activity of the Src family of PTKs is negatively regulated by phosphorylation at the C-terminal tyrosine residue, and the PTK Csk has been demonstrated to phosphorylate this C-terminal residue of the Src family of PTKs. To investigate the role of Csk in BCR signaling, Csk-negative chicken B-cell clones were generated. In these Csk-negative cells, Lyn became constitutively active and highly phosphorylated at the autophosphorylation site, indicating that Csk is necessary to sustain Lyn in an inactive state. Since the C-terminal tyrosine phosphorylation of Lyn is barely detectable in the unstimulated, wild-type B cells, our data suggest that the activities of Csk and a certain protein tyrosine phosphatase(s) are balanced to maintain Lyn at a hypophosphorylated and inactive state. Moreover, we show that the kinase activity of Syk was also constitutively activated in Csk-negative cells. The degree of activation of both the Lyn and Syk kinases in Csk-negative cells was comparable to that observed in wild-type cells after BCR stimulation. However, BCR stimulation was still necessary in Csk-negative cells to elicit tyrosine phosphorylation of cellular proteins, as well as calcium mobilization and inositol 1,4,5-trisphosphate generation. These results suggest that not only activation of the Lyn and Syk kinases but also additional signals induced by the cross-linking of the BCR are required for full transduction of BCR signaling.  相似文献   

15.
The tyrosine phosphorylation cascade originated from Fc gamma receptors (Fc gamma Rs) is essential for macrophage functions including phagocytosis. Although the initial step is ascribed to Src family tyrosine kinases, the role of individual kinases in phagocytosis signaling is still to be determined. In reconstitution experiments, we first showed that expression in the RAW 264.7 cell line of C-terminal Src kinase (Csk) inhibited and that of a membrane-anchored, gain-of-function Csk abolished the Fc gamma R-mediated signaling that leads to phagocytosis in a kinase-dependent manner. We next tested reconstruction of the signaling in the membrane-anchored, gain-of-function Csk-expressing cells by introducing Src family kinases the C-terminal negative regulatory sequence of which was replaced with a c-myc epitope. Those constructs derived from Lyn and Hck (a-Lyn and a-Hck) that associated with detergent-resistant membranes successfully reconstructed Fc gamma R-mediated Syk activation, filamentous actin rearrangement, and phagocytosis. In contrast, c-Src-derived construct (a-Src), that was excluded from detergent-resistant membranes, could not restore the series of phagocytosis signaling. Tyrosine phosphorylation of Vav and c-Cbl was restored in common by a-Lyn, a-Hck, and a-Src, but Fc gamma RIIB tyrosine phosphorylation, which is implicated in negative signaling, was reconstituted solely by a-Lyn and a-Hck. These findings suggest that Src family kinases are differentially involved in Fc gamma R-signaling and that selective kinases including Lyn and Hck are able to fully transduce phagocytotic signaling.  相似文献   

16.
Cbl is an adaptor protein that is phosphorylated and recruited to several receptor and non-receptor tyrosine kinases upon their activation. After binding to the activated receptor, Cbl plays a key role as a kinase inhibitor and as an E3 ubiquitin ligase, thereby contributing to receptor down-regulation and internalization. In addition, Cbl translocates to intracellular vesicular compartments following receptor activation. We report here that Cbl also associates with Golgi membranes. Confocal immunofluorescence staining of Cbl in a variety of unstimulated cells, including CHO cells, revealed a prominent perinuclear colocalization of Cbl and a Golgi marker. Both the prominent Cbl staining and the Golgi marker were dispersed by brefeldin A. Subcellular fractionation of CHO cells demonstrated that about 10% of Cbl is stably associated with membranes, and that Golgi-enriched membrane fractions produced by isopycnic density centrifugation and free-flow electrophoresis are also enriched in Cbl, relative to other membrane fractions. The membrane-bound Cbl was hyperphosphorylated and it co-immunoprecipitated with endogenous Src. By immunofluorescence, some Src colocalized with Cbl and Golgi markers, and Src, like Cbl, was present in the Golgi-enriched fraction prepared by sequential density centrifugation and free-flow electrophoresis. Transfection of an activated form of Src, but not wild-type Src, increased the amount of Src that co-immunoprecipitated with Cbl, and increased the intensity of Cbl staining on the Golgi. This result, together with the increased tyrosine phosphorylation of the membrane-associated Cbl, suggests that Golgi-associated Cbl could be part of a molecular complex that contains activated Src. The localization and interaction of Src and Cbl at the Golgi and the regulation of the interaction of Cbl with Golgi membrane suggest that this complex may contribute to the regulation of Golgi function.  相似文献   

17.
Phosphoproteins and protein kinases of the Golgi apparatus membrane   总被引:5,自引:0,他引:5  
Incubation of a highly purified fraction derived from rat liver Golgi apparatus with [gamma-32P]ATP results in phosphorylation of several endogenous phosphoproteins. One phosphoprotein with an apparent Mr of 48,300 is radiolabeled to an apparent extent at least 5-fold higher than any other phosphoprotein as part of either the Golgi apparatus or highly purified rat liver fractions derived from the rough endoplasmic reticulum, mitochondria, plasma membrane, coated vesicles, cytosol, and total homogenate. Approximately 70% of the 48.3-kDa phosphoprotein appears to be a specific extrinsic Golgi membrane protein with the phosphorylated amino acid being threonine. The protein kinase which phosphorylates the 48.3-kDa protein is an intrinsic Golgi membrane protein and is dependent on Mg2+, independent of Ca2+, calmodulin, and cAMP, and is inhibited by N-ethylmaleimide. Preliminary evidence suggests that there are also intrinsic membrane protein kinases in the Golgi apparatus which are dependent on Ca2+ and cAMP. The physiological role of the above phosphoproteins and protein kinases is not known.  相似文献   

18.
19.
Mitochondrial tyrosine phosphorylation is emerging as an important mechanism in regulating mitochondrial function. This article, aimed at identifying which kinases are the major agents in mitochondrial tyrosine phosphorylation, shows that this role should be attributed to Src family members. Indeed, various members of this family, for example, Fgr, Fyn, Lyn, c-Src, are constitutively present in the internal structure of mitochondria as well as Csk, a key enzyme in the regulation of the activity of this family. By means of different approaches, biochemical fractioning, Western blotting and immunogold analysis "in situ" of phosphotyrosine signaling, evidence is reported on the existence of a signal transduction pathway from plasma membrane to mitochondria, resulting in increasing Src-dependent mitochondrial tyrosine phosphorylation. The activation of Src kinases at mitochondrial level is associated with the proliferative status where several mitochondrial proteins are specifically tyrosine-phosphorylated.  相似文献   

20.
A Hirao  I Hamaguchi  T Suda    N Yamaguchi 《The EMBO journal》1997,16(9):2342-2351
Chk/Hyl is a recently isolated non-receptor tyrosine kinase with greatest homology to a ubiquitous negative regulator of Src family kinases, Csk. To understand the significance of co-expression of Chk and Csk in platelets, we examined the subcellular localization of each protein. Chk, but not Csk, was completely translocated from the Triton X-100-soluble to the Triton X-100-insoluble cytoskeletal fraction within 10 s of thrombin stimulation. Chk and Lyn, but not Csk and c-Src, co-fractionated in the higher density lysate fractions of resting platelets, with Chk being found to localize close to CD36 (membrane glycoprotein IV)-anchored Lyn. The kinase activity of co-fractionated Lyn was suppressed 3-fold. In vitro phosphorylation assays showed that Chk suppressed Lyn activity by phosphorylating its C-terminal negative regulatory tyrosine. Upon stimulation of platelets with thrombin, the rapid and complete translocation of Chk away from Lyn caused concomitant activation of Lyn. This activation was accompanied by dephosphorylation of Lyn at its C-terminal negative regulatory tyrosine in cooperation with a protein tyrosine phosphatase. These results suggest that Chk, but not Csk, may function as a translocation-controlled negative regulator of CD36-anchored Lyn in thrombin-induced platelet activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号