首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple sclerosis (MS) is a demyelinating disorder characterized by massive neurodegeneration and profound axonal loss. Since myelin is enriched with sphingolipids and some of them display toxicity, biological function of sphingolipids in demyelination has been investigated in MS brain tissues. An elevation of sphingosine with a decrease in monoglycosylceramide and psychosine (myelin markers) was observed in MS white matter and plaque compared to normal brain tissue. This indicated that sphingosine toxicity might mediate oligodendrocyte degeneration. To explain the source of sphingosine accumulation, total sphingolipid profile was investigated in Lewis rats after inducing experimental autoimmune encephalomyelitis (EAE) and also in human oligodendrocytes in culture. An intermittent increase in ceramide followed by sphingosine accumulation in EAE spinal cord along with a stimulation of serine-palmitoyltransferase (SPT) activity was observed. Apoptosis was identified in the lumbar spinal cord, the most prominent demyelinating area, in the EAE rats. TNFα and IFNγ stimulation of oligodendrocytes in culture also led to an accumulation of ceramide with an elevation of sphingosine. Ceramide elevation was drastically blocked by myriocin, an inhibitor of SPT, and also by FTY720. Myriocin treatment also protected oligodendrocytes from cytokine mediated apoptosis or programmed cell death. Hence, we propose that sphingosine toxicity may contribute to demyelination in both EAE and MS, and the intermittent ceramide accumulation in EAE may, at least partly, be mediated via SPT activation, which is a novel observation that has not been previously reported.  相似文献   

2.
An enzymatic method to quantify the mass levels of free sphingosine in cellular lipid extracts was developed. The assay is based upon the observation that ceramide is phosphorylated by Escherichia coli diacylglycerol kinase. Although sphingosine is not recognized by the enzyme, it can be converted to a substrate by acylation with hexanoic anhydride. Using a mixed micellar assay, previously reported for the mass quantification of diacylglycerol, the short-chain ceramide (N-C6-sphingosine), generated by acylation, is quantitatively phosphorylated to N-C6-[32P]sphingosine phosphate. This assay allows quantification of sphingosine over a broad range from 25 to 5000 pmol. When this assay was applied to standard compounds, reverse-phase thin-layer chromatography of the reaction products was adequate to separate the phosphorylated derivatives of long-chain ceramide and N-C6-sphingosine. However, the presence of other lipids in extracts from biological samples (mainly monoalkylglycerols which are also a substrate for the diacylglycerol kinase) interfered and necessitated an additional purification step. The most efficient purification step devised was a combination of anion- and cation-exchange chromatography. The mass levels of free sphingoid bases in different cultured cells were quantified using this assay. Levels varied between 8 to 20 pmol/10(6) cells. When normalized to phospholipids, sphingosine levels varied between 0.01 and 0.04 mol%. The lowest levels were found in L929 cells, while Schwann cells derived from Twitcher mice contained the highest levels. These levels were significantly higher than those of Schwann cells derived from normal mice.  相似文献   

3.
We provide evidence that the sphingolipid ceramide, in addition to its pro-apoptotic function, regulates neural progenitor (NP) motility in vitro and brain development in vivo . Ceramide ( N -palmitoyl d -erythro sphingosine and N -oleoyl d -erythro sphingosine) and the ceramide analog N -oleoyl serinol (S18) stimulate migration of NPs in scratch (wounding) migration assays. Sphingolipid depletion by inhibition of de novo ceramide biosynthesis, or ceramide inactivation using an anti-ceramide antibody, obliterates NP motility, which is restored by ceramide or S18. These results suggest that ceramide is crucial for NP motility. Wounding of the NP monolayer activates neutral sphingomyelinase indicating that ceramide is generated from sphingomyelin. In membrane processes, ceramide is co-distributed with its binding partner atypical protein kinase C ζ/λ (aPKC), and Cdc42, α/β-tubulin, and β-catenin, three proteins involved in aPKC-dependent regulation of cell polarity and motility. Sphingolipid depletion by myriocin prevents membrane translocation of aPKC and Cdc42, which is restored by ceramide or S18. These results suggest that ceramide-mediated membrane association of aPKC/Cdc42 is important for NP motility. In vivo , sphingolipid depletion leads to ectopic localization of mitotic or post-mitotic neural cells in the embryonic brain, while S18 restores the normal brain organization. In summary, our study provides novel evidence that ceramide is critical for NP motility and polarity in vitro and in vivo .  相似文献   

4.
Normally, cell proliferation and death are carefully balanced in higher eukaryotes, but one of the most important regulatory mechanisms, apoptosis, is upset in many malignancies, including hepatocellular-derived ones. Therefore, reinforcing cell death often is mandatory in anticancer therapy. We previously reported that a combination of tumor necrosis factor-α (TNF) and cycloheximide (CHX) efficiently kill HTC cells, a rat hepatoma line, in an apoptosis-like mode. Death is actively mediated by the lysosomal compartment, although lysosomal ceramide was previously shown not to be directly implicated in this process. In the present study, we show that TNF/CHX increase lysosomal ceramide that is subsequently converted into sphingosine. Although ceramide accumulation does not significantly alter the acidic compartment, the sphingosine therein generated causes lysosomal membrane permeabilization (LMP) followed by relocation of lysosomal cathepsins to the cytoplasm. TNF/CHX-induced LMP is effectively abrogated by siRNAs targeting acid sphingomyelinase or acid ceramidase, which prevent both LMP and death induced by TNF/CHX. Taken together, our results demonstrate that lysosomal accumulation of ceramide is not detrimental per se, whereas its degradation product sphingosine, which has the capacity to induce LMP, appears responsible for the observed apoptotic-like death.  相似文献   

5.
The cholinephosphotransferase reaction is shown to be catalyzed by an enzyme which has no hydrolytic activity and which is different from a phospholipase C type activity also present in these plasma membrane preparations. Diacylglycerols and sphingosine, at a concentration above 0.4 mM, are effective inhibitors of sphingomyelin formation in the presence of 0.3 mM free ceramide, the true acceptor in this reaction. Free sphingosine is not an acceptor for the cholinephosphate group, as the anticipated reaction product, sphingosylphosphocholine , could not be detected. Sphingosine inhibition may result from its structural similarity to the natural substrates of the reaction, ceramide and diacylglycerols. From the data obtained with cholesterol, triacylglycerols, acetylated ( triacetyl ) sphingosine and acetylated ceramides used as potential inhibitors of the reaction it is concluded that the free hydroxyl group at C1 of the sphingosine backbone or of the glycerol moiety of diacylglycerols and a non-polar residue consisting of an aliphatic chain were prerequisites for inhibitory activity. These results are discussed in terms of substrate specificity of the enzyme catalyzing the transfer reaction. Some of the factors influencing the regulation of the phosphatidylcholine/sphingomyelin ratio in the plasma membrane were related to the topography of sphingomyelin in the outer half-layer of the plasma membrane.  相似文献   

6.
Neutral ceramidase is a type II integral membrane protein, which is occasionally secreted into the extracellular milieu after the processing of its N-terminal anchor. We found that when overexpressed in CHOP cells, neutral ceramidase hydrolyzed cell surface ceramide, which increased in amount after the treatment of cells with bacterial sphingomyelinase, leading to an increase in the cellular level of sphingosine and sphingosine 1-phosphate. On the other hand, knockdown of the endogenous enzyme by siRNA decreased the cellular level of both sphingolipid metabolites. The treatment of cells with bovine serum albumin significantly reduced the cellular level of sphingosine, but not sphingosine 1-phosphate, generated by overexpression of the enzyme. The cellular level of sphingosine 1-phosphate increased with overexpression of the cytosolic sphingosine kinase. These results suggest that sphingosine 1-phosphate is mainly produced inside of the cell after the incorporation of sphingosine generated on the plasma membranes. The enzyme also seems to participate in the hydrolysis of serum-derived ceramide in the vascular system. Significant amounts of sphingosine as well as sphingosine 1-phosphate were generated in the cell-free conditioned medium of ceramidase transfectants, compared with mock transfectants. No increase in these metabolites was observed if serum or bacterial sphingomyelinase was omitted from the conditioned medium, suggesting that the major source of ceramide is the serum-derived sphingomyelin. A sphingosine 1-phosphate receptor, S1P(1), was internalized much faster by the treatment of S1P(1)-overexpressing cells with conditioned medium of ceramidase transfectants than that of mock transfectants. Collectively, these results clearly indicate that the enzyme is involved in the metabolism of ceramide at the plasma membrane and in the extracellular milieu, which could regulate sphingosine 1-phosphate-mediated signaling through the generation of sphingosine.  相似文献   

7.
Recent studies indicate that insulin resistance and type 2 diabetes result from the accumulation of lipids in tissues not suited for fat storage, such as skeletal muscle and the liver. To elucidate the mechanisms linking exogenous fats to the inhibition of insulin action, we evaluated the effects of free fatty acids (FFAs) on insulin signal transduction in cultured C2C12 myotubes. As we described previously (Chavez, J. A., and Summers, S. A. (2003) Arch. Biochem. Biophys. 419, 101-109), long-chain saturated FFAs inhibited insulin stimulation of Akt/protein kinase B, a central regulator of glucose uptake and anabolic metabolism. Moreover, these FFAs stimulated the de novo synthesis of ceramide and sphingosine, two sphingolipids shown previously to inhibit insulin action. To determine the contribution of either sphingolipid in FFA-dependent inhibition of insulin action, we generated C2C12 myotubes that constitutively overexpress acid ceramidase (AC), an enzyme that catalyzes the lysosomal conversion of ceramide to sphingosine. AC overexpression negated the inhibitory effects of saturated FFAs on insulin signaling while blocking their stimulation of ceramide accumulation. By contrast, AC overexpression stimulated the accrual of sphingosine. These results support a role for aberrant accumulation of ceramide, but not sphingosine, in the inhibition of muscle insulin sensitivity by exogenous FFAs.  相似文献   

8.
Sphingosine-1-phosphate lyase is a widely expressed enzyme that catalyzes the essentially irreversible cleavage of the signaling molecule sphingosine 1-phosphate. To investigate whether sphingosine-1-phosphate lyase influences mammalian cell fate decisions, a recombinant human sphingosine-1-phosphate lyase fused to green fluorescent protein was expressed in HEK293 cells. The recombinant enzyme was active, localized to the endoplasmic reticulum, and reduced baseline sphingosine and sphingosine 1-phosphate levels. Stable overexpression led to diminished viability under stress, which was attributed to an increase in apoptosis and was reversible in a dose-dependent manner by exogenous sphingosine 1-phosphate. In contrast to sphingosine 1-phosphate, the products of the lyase reaction had no effect on apoptosis. Lyase enzymatic activity was required to potentiate apoptosis, because cells expressing a catalytically inactive enzyme behaved like controls. Stress increased the amounts of long- and very long-chain ceramides in HEK293 cells, and this was enhanced in cells overexpressing wild type but not catalytically inactive lyase. The ceramide increases appeared to be required for apoptosis, because inhibition of ceramide synthase with fumonisin B1 decreased apoptosis in lyase-overexpressing cells. Thus, sphingosine-1-phosphate lyase overexpression in HEK293 cells decreases sphingosine and sphingosine 1-phosphate amounts but elevates stress-induced ceramide generation and apoptosis. This identifies sphingosine-1-phosphate lyase as a dual modulator of sphingosine 1-phosphate and ceramide metabolism as well as a regulator of cell fate decisions and, hence, a potential target for diseases with an imbalance in these biomodulators, such as cancer.  相似文献   

9.
Various sphingolipids are being viewed as bioactive molecules and/or second messengers. Among them, ceramide (or N-acylsphingosine) and sphingosine generally behave as pro-apoptotic mediators. Indeed, ceramide mediates the death signal initiated by numerous stress agents which either stimulate its de novo synthesis or activate sphingomyelinases that release ceramide from sphingomyelin. For instance, the early generation of ceramide promoted by TNF is mediated by a neutral sphingomyelinase the activity of which is regulated by the FAN adaptor protein, thereby controlling caspase activation and the cell death programme. In addition, the activity of this neutral sphingomyelinase is negatively modulated by caveolin, a major constituent of some membrane microdomains. The enzyme sphingosine kinase also plays a crucial role in apoptosis signalling by regulating the intracellular levels of two sphingolipids having opposite effects, namely the pro-apoptotic sphingosine and the anti-apoptotic sphingosine 1-phosphate molecule. Ceramide and sphingosine metabolism therefore appears as a pivotal regulatory pathway in the determination of cell fate.  相似文献   

10.
We have previously purified a membrane-bound ceramidase from rat brain and recently cloned the human homologue. We also observed that the same enzyme is able to catalyze the reverse reaction of ceramide synthesis. To obtain insight into the biochemistry of this enzyme, we characterized in this study this reverse activity. Using sphingosine and palmitic acid as substrates, the enzyme exhibited Michaelis-Menten kinetics; however, the enzyme did not utilize palmitoyl-CoA as substrate. Also, the activity was not inhibited in vitro and in cells by fumonisin B1, an inhibitor of the CoA-dependent ceramide synthase. The enzyme showed a narrow pH optimum in the neutral range, and there was very low activity in the alkaline range. Substrate specificity studies were performed, and the enzyme showed the highest activity with d-erythro-sphingosine (Km of 0.16 mol %, and Vmax of 0.3 micromol/min/mg), but d-erythro-dihydrosphingosine and the three unnatural stereoisomers of sphingosine were poor substrates. The specificity for the fatty acid was also studied, and the highest activity was observed for myristic acid with a Km of 1.7 mol % and a Vmax of 0.63 micromol/min/mg. Kinetic studies were performed to investigate the mechanism of the reaction, and Lineweaver-Burk plots indicated a sequential mechanism. Two competitive inhibitors of the two substrates were identified, l-erythro-sphingosine and myristaldehyde, and inhibition studies indicated that the reaction followed a random sequential mechanism. The effect of lipids were also tested. Most of these lipids showed moderate inhibition, whereas the effects of phosphatidic acid and cardiolipin were more potent with total inhibition at around 2.5-5 mol %. Paradoxically, cardiolipin stimulated ceramidase activity. These results define the biochemical characteristics of this reverse activity. The results are discussed in view of a possible regulation of this enzyme by the intracellular pH or by an interaction with cardiolipin and/or phosphatidic acid.  相似文献   

11.
A Mg 2+-independent and N-ethylmaleimide-insensitive phosphatidate phosphohydrolase (PAP-2) has been identified in the plasma membrane of cells and it has been purified. The enzyme is a multi-functional phosphohydrolase that can dephosphorylate phosphatidate, lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate and these substrates are competitive inhibitors of the reaction. The action of PAP-2 could terminate signalling by these bioactive lipids and at the same time generates compounds such as diacylglycerol, sphingosine and ceramide which are also potent signalling molecules. In relation to phosphatidate metabolism, sphingosine (or sphingosine l-phosphate) stimulates phospholipase D and thus the formation of phosphatidate. At the same time sphingosine inhibits PAP-2 activity thus further increasing phosphatidate concentrations. By contrast, ceramides inhibit the activation of phospholipase D by a wide variety of agonists and increase the dephosphorylation of phosphatidate,lysophosphatidate, sphingosine 1-phosphate and ceramide 1-phosphate. These actions demonstrate ‘cross-talk’ between the glycerolipid and sphingolipid signalling pathways and the involvement of PAP-2 in modifying the balance of the bioactive lipids generated by these pathways during cell activation,  相似文献   

12.
In yeast, the long-chain sphingoid base phosphate phosphohydrolase Lcb3p is required for efficient ceramide synthesis from exogenous sphingoid bases. Similarly, in this study, we found that incorporation of exogenous sphingosine into ceramide in mammalian cells was regulated by the homologue of Lcb3p, sphingosine-1-phosphate phosphohydrolase 1 (SPP-1), an endoplasmic reticulum resident protein. Sphingosine incorporation into endogenous long-chain ceramides was increased by SPP-1 overexpression, whereas recycling of C(6)-ceramide into long-chain ceramides was not altered. The increase in ceramide was inhibited by fumonisin B(1), an inhibitor of ceramide synthase, but not by ISP-1, an inhibitor of serine palmitoyltransferase, the rate-limiting step in the de novo biosynthesis of ceramide. Mass spectrometry analysis revealed that SPP-1 expression increased the incorporation of sphingosine into all ceramide acyl chain species, particularly enhancing C16:0, C18:0, and C20:0 long-chain ceramides. The increased recycling of sphingosine into ceramide was accompanied by increased hexosylceramides and, to a lesser extent, sphingomyelins. Sphingosine kinase 2, but not sphingosine kinase 1, acted in concert with SPP-1 to regulate recycling of sphingosine into ceramide. Collectively, our results suggest that an evolutionarily conserved cycle of phosphorylation-dephosphorylation regulates recycling and salvage of sphingosine to ceramide and more complex sphingolipids.  相似文献   

13.
The present report was addressed to study the influence of sphingolipid metabolism in determining cellular fate. In nonstimulated proliferating Madin-Darby canine kidney (MDCK) cells, sphingolipid de novo synthesis is branched mainly to a production of sphingomyelin and ceramide, with a minor production of sphingosylphosphocholine, ceramide 1-phosphate, and sphingosine 1-phosphate. Experiments with (32)P as a radioactive precursor showed that sphingosine 1-phosphate is produced mainly by a de novo independent pathway. Enzymatic inhibition of the de novo pathway and ceramide synthesis affected cell number and viability only slightly, without changing sphingosine 1-phosphate production. By contrast, inhibition of sphingosine kinase-1 activity provoked a significant reduction in both cell number and viability in a dose-dependent manner. When sphingolipid metabolism was studied, an increase in de novo formed ceramide was found, which correlated with the concentration of enzyme inhibitor and the reduction in cell number and viability. Knockdown of sphingosine kinase-1 expression also induced an accumulation of de novo synthesized ceramide, provoking a slight reduction in cell number and viability similar to that induced by a low concentration of the sphingosine kinase inhibitor. Taken together, our results indicate that the level of de novo formed ceramide is controlled by the synthesis of sphingosine 1-phosphate, which appears to occur through a de novo synthesis-independent pathway, most probably the salvage pathway, that is responsible for the MDCK cell fate, suggesting that under proliferating conditions, a dynamic interplay exists between the de novo synthesis and the salvage pathway.  相似文献   

14.
In order to increase the sensitivity of the assay for ceramide: UDPGlc glucosyltransferase, the enzyme that makes glucocerebroside, we synthesized a variety of ceramide homologues that might be better substrates than the naturally occurring ceramides. N-Octanoyl sphingosine proved to be the best lipid tested in liver and brain. It could be added to the tissue homogenate in the dry form, as a thin layer coated on Celite, or in liposomes, prepared from lecithin and cerebroside sulfate. The liposomal form produced better replication of assay values. It is suggested that the addition of cerebroside sulfate to liposomal preparations might be a good, and more physiological, replacement for the commonly used dicetyl phosphate. A new homologue of DL-sphinganine, decasphinganine, was synthesized by an efficient series of steps and acylated with different fatty acids to form ceramide homologues. The best substrate in this series was the lauroyl amide and it is suggested that this lipid be used in cerebroside synthetase assays because of the convenience of preparing it, even though it is not as good as octanoyl sphingosine. Both compounds are distinctly better than natural ceramide or DL-sphinganine amides. From comparisons of enzyme activity under various conditions, the tentative conclusion is drawn that the enzymes in liver and brain have different properties, and that liver has two different synthetases.  相似文献   

15.
Oxidized LDL (oxLDL) have been implicated in diverse biological events leading to the development of atherosclerotic lesions. We previously demonstrated that the proliferation of cultured vascular smooth muscle cells (SMC) induced by oxLDL is preceded by an increase in neutral sphingomyelinase activity, sphingomyelin turnover to ceramide, and stimulation of mitogen-activated protein kinases (Augé, N., Escargueil-Blanc, I., Lajoie-Mazenc, I., Suc, I., Andrieu-Abadie, N., Pieraggi, M. T., Chatelut, M., Thiers, J. C., Jaffrézou, J. P., Laurent, G., Levade, T., Nègre-Salvayre, A., and Salvayre, R. (1998) J. Biol. Chem. 273, 12893-12900). Since ceramide can be converted to other bioactive metabolites, such as the well established mitogen sphingosine 1-phosphate (S1P), we investigated whether additional ceramide metabolites are involved in the oxLDL-induced SMC proliferation. We report here that incubation of SMC with oxLDL increased the activities of both acidic and alkaline ceramidases as well as sphingosine kinase, and elevated cellular sphingosine and S1P. Furthermore, the mitogenic effect of oxLDL was inhibited by D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol and N,N-dimethylsphingosine which are inhibitors of ceramidase and sphingosine kinase, respectively. These findings suggest that S1P is a key mediator of the mitogenic effect of oxLDL. In agreement with this conclusion, exogenous addition of sphingosine stimulated the proliferation of cultured SMC, and this effect was abrogated by dimethylsphingosine but not by fumonisin B1, an inhibitor of the acylation of sphingosine to ceramide. Exogenous S1P also promoted SMC proliferation. Altogether, these results strongly suggest that the mitogenic effect of oxLDL in SMC involves the combined activation of sphingomyelinase(s), ceramidase(s), and sphingosine kinase, resulting in the turnover of sphingomyelin to a number of sphingolipid metabolites, of which at least S1P is critical for mitogenesis.  相似文献   

16.
The role of ceramide in biological functions is typically based on the elevation of cellular ceramide, measured by LC-MS in the total cell lysate. However, it has become increasingly appreciated that ceramide in different subcellular organelles regulates specific functions. In the plasma membrane, changes in ceramide levels might represent a small percentage of the total cellular ceramide, evading MS detection but playing a critical role in cell signaling. Importantly, there are currently no efficient techniques to quantify ceramide in the plasma membrane. Here, we developed a method to measure the mass of ceramide in the plasma membrane using a short protocol that is based on the hydrolysis of plasma membrane ceramide into sphingosine by the action of exogenously applied bacterial recombinant neutral ceramidase. Plasma membrane ceramide content can then be determined by measuring the newly generated sphingosine at a stoichiometry of 1:1. A key step of this protocol is the chemical fixation of cells to block cellular sphingolipid metabolism, especially of sphingosine to sphingosine 1-phosphate. We confirmed that chemical fixation does not disrupt the lipid composition at the plasma membrane, which remains intact during the time of the assay. We illustrate the power of the approach by applying this protocol to interrogate the effects of the chemotherapeutic compound doxorubicin. Here we distinguished two pools of ceramide, depending on the doxorubicin concentration, consolidating different reports. In summary, we have developed the first approach to quantify ceramide in the plasma membrane, allowing the study of new avenues in sphingolipid compartmentalization and function.  相似文献   

17.
Ceramide is a pivotal molecule in signal transduction and an essential structural component of the epidermal permeability barrier. The epidermis is marked by a high concentration of ceramide and by a unique spectrum of ceramide species: Besides the two ceramide structures commonly found in mammalian tissue, N-acylsphingosine and N-2-hydroxyacyl-sphingosine, six additional ceramides differing in the grade of hydroxylation of either the sphingosine base or the fatty acid have been identified in the epidermis. Here we report on the characterization of an IgM-enriched polyclonal mouse serum against ceramide. In dot blot assays with purified epidermal lipids the antiserum bound to a similar extent to N-acyl-sphingosine (ceramide 2), N-acyl-4-hydroxysphinganine (ceramide 3), and N-(2-hydroxyacyl)-sphingosine (ceramide 5), whereas no specific reaction was detected with glycosylceramides, sphingomyelin, free sphingosine, phospholipids, or cholesterol. In contrast, a monoclonal IgM antibody, also claimed to be specific for ceramide, was shown to bind specifically to sphingomyelin and therefore was not further investigated. In thin-layer chromatography immunostaining with purified lipids a strong and highly reproducible reaction of the antiserum with ceramide 2 and ceramide 5 was observed, whereas the reaction with ceramide 1 and ceramide 3 was weaker and more variable. Ceramide 2 and ceramide 5 were detected in the nanomolar range at serum dilutions of up to 1:100 by dot blot and thin-layer immunostaining. In thin-layer chromatography immunostaining of crude lipid extracts from human epidermis, the antiserum also reacted with N-(2-hydroxyacyl)-4-hydroxysphinganine (ceramide 6) and N-(2-hydroxyacyl)-6-hydroxysphingosine (ceramide 7). Furthermore, the suitability of the antiserum for the detection of endogenous ceramide by immunolight microscopy was demonstrated on cryoprocessed human skin tissue. Double immunofluorescence labeling experiments with the anti-ceramide antiserum and the recently described anti-glucosylceramide antiserum (Brade et al., 2000, Glycobiology 10, 629) showed that both lipids are concentrated in separate epidermal sites. Whereas anti-ceramide stained the dermal and basal epidermal cells as well as the corneocytes, anti-glucosylceramide staining was concentrated in the stratum granulosum. In conclusion, the specificity and sensitivity of the reagent will enable studies on the subcellular distribution and biological functions of endogenous ceramide.  相似文献   

18.
Studies in cell culture and mouse models of cancer have indicated that the soluble sphingolipid metabolite sphingosine 1-phosphate (S1P) promotes cancer cell proliferation, survival, invasiveness, and tumor angiogenesis. In contrast, its metabolic precursor ceramide is prodifferentiative and proapoptotic. To determine whether sphingolipid balance plays a significant role in glioma malignancy, we undertook a comprehensive analysis of sphingolipid metabolites in human glioma and normal gray matter tissue specimens. We demonstrate, for the first time, a systematic shift in sphingolipid metabolism favoring S1P over ceramide, which increases with increasing cancer grade. S1P content was, on average, 9-fold higher in glioblastoma tissues compared with normal gray matter, whereas the most abundant form of ceramide in the brain, C18 ceramide, was on average 5-fold lower. Increased S1P content in the tumors was significantly correlated with increased sphingosine kinase 1 (SPHK1) and decreased sphingosine phosphate phosphatase 2 (SGPP2) expression. Inhibition of S1P production by cultured glioblastoma cells, using a highly potent and selective SPHK1 inhibitor, blocked angiogenesis in cocultured endothelial cells without affecting VEGF secretion. Our findings validate the hypothesis that an altered ceramide/S1P balance is an important feature of human cancers and support the development of SPHK1 inhibitors as antiangiogenic agents for cancer therapy.  相似文献   

19.
Sphingomyelin or the products derived from its metabolism may constitute a signaling system involved in a variety of cellular processes. The activation of a plasma membrane neutral sphingomyelinase, which catalyzes the first step in sphingomyelin turnover, has been suggested to play an important role in cellular differentiation. We have studied the effect of exogenous staphylococcal sphingomyelinase on DNA synthesis and on the composition of membrane sphingolipids in quiescent Swiss 3T3 fibroblasts. Sphingomyelinase stimulated proliferation of Swiss 3T3 cells and potentiated the mitogenic action of other growth factors, such as insulin, epidermal growth factor, and bombesin. Treatment with sphingomyelinase produced a significant decrease in sphingomyelin accompanied by a corresponding increase in ceramide levels. No significant increases were detected in the levels of products derived from ceramide, i.e. ceramide 1-phosphate, sphingosine, or sphingosine 1-phosphate. To further investigate the role of ceramide in cellular proliferation, we studied the effect of cell-permeable analogs of ceramide on DNA synthesis in quiescent Swiss 3T3 cells. Both N-hexanoylsphingosine and N-acetylsphingosine at low concentrations stimulated [3H]thymidine incorporation and acted synergistically with a wide variety of growth factors known to induce proliferation of quiescent Swiss 3T3 fibroblasts. Similar effects were observed with bovine brain ceramides. These results suggest that ceramide may be involved in the regulation of cellular proliferation.  相似文献   

20.
Ceramide channels formed in the outer membrane of mitochondria have been proposed to be the pathways by which proapoptotic proteins are released from mitochondria during the early stages of apoptosis. We report that sphingosine also forms channels in membranes, but these differ greatly from the large oligomeric barrel-stave channels formed by ceramide. Sphingosine channels have short open lifetimes and have diameters less than 2 nm, whereas ceramide channels have long open lifetimes, enlarge in size reaching diameters in excess of 10 nm. Unlike ceramide, sphingosine forms channels in erythrocyte plasma membranes that vary in size with concentration, but with a maximum possible channel diameter of 2 nm. In isolated mitochondria, a large proportion of the added sphingosine was rapidly metabolized to ceramide in the absence of externally added fatty acids or fatty-acyl-CoAs. The ceramide synthase inhibitor, fumonisin B1 failed to prevent sphingosine metabolism to ceramide and actually increased it. However, partial inhibition of conversion to ceramide was achieved in the presence of ceramidase inhibitors, indicating that reverse ceramidase activity is at least partially responsible for sphingosine metabolism to ceramide. A small amount of cytochrome c release was detected. It correlated with the level of ceramide converted from sphingosine. Thus, sphingosine channels, unlike ceramide channels, are not large enough to allow the passage of proapoptotic proteins from the intermembrane space of mitochondria to the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号