首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RIG-I样受体与RNA病毒识别   总被引:2,自引:0,他引:2  
秦成峰  秦鄂德 《微生物学报》2008,48(10):1418-1423
RIG-I样受体(RIG-I like receptors,RLR)是一类新发现的模式识别受体,能够识别细胞质中的病毒RNA,通过RLR级联信号诱导干扰素和促炎症细胞因子的产生,对抗病毒天然免疫的建立起着非常重要的作用.RLR信号通路既受宿主的严格调控,也能够作为病毒逃避宿主干扰素反应的靶点.本文重点讨论了RLR及其在RNA病毒识别和抗病毒天然免疫中的作用.  相似文献   

2.
Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus.  相似文献   

3.
4.
Cytoplasmic and endosomal RNA sensors recognize RNA virus infection and signals to protect host cells by inducing type I IFN. The cytoplasmic RNA sensors, retinoic acid inducible gene I/melanoma differentiation-associated gene 5, actually play pivotal roles in sensing virus replication. IFN-β promoter stimulator-1 (IPS-1) is their common adaptor for IFN-inducing signaling. Toll/IL-1R homology domain-containing adaptor molecule 1 (TICAM-1), also known as TRIF, is the adaptor for TLR3 that recognizes viral dsRNA in the early endosome in dendritic cells and macrophages. Poliovirus (PV) belongs to the Picornaviridae, and melanoma differentiation-associated gene 5 reportedly detects replication of picornaviruses, leading to the induction of type I IFN. In this study, we present evidence that the TLR3/TICAM-1 pathway governs IFN induction and host protection against PV infection. Using human PVR transgenic (PVRtg) mice, as well as IPS-1(-/-) and TICAM-1(-/-) mice, we found that TICAM-1 is essential for antiviral responses that suppress PV infection. TICAM-1(-/-) mice in the PVRtg background became markedly susceptible to PV, and their survival rates were decreased compared with wild-type or IPS-1(-/-) mice. Similarly, serum and organ IFN levels were markedly reduced in TICAM-1(-/-)/PVRtg mice, particularly in the spleen and spinal cord. The sources of type I IFN were CD8α(+)/CD11c(+) splenic dendritic cells and macrophages, where the TICAM-1 pathway was more crucial for PV-derived IFN induction than was the IPS-1 pathway in ex vivo and in vitro analyses. These data indicate that the TLR3/TICAM-1 pathway functions are dominant in host protection and innate immune responses against PV infection.  相似文献   

5.
6.
Virus recognition and induction of interferon (IFN) are critical components of the innate immune system. The Toll-like receptor (TLR) and RIG-I-like receptor families have been characterized as key players in RNA virus detection. Signaling cascades initiated by these receptors are crucial for establishment of an IFN signaling mediated antiviral state in infected and neighboring cells and containment of virus replication as well as initiation of the adaptive immune response. In this review, we focus on the diverse and overlapping functions of these receptors, their physiological importance, and respective viral inducers. We highlight the roles of TRL3, TLR7/8, retinoic acid inducible gene I, melanoma differentiation-associated gene 5, and the RNA molecules responsible for activating these viral sensors.  相似文献   

7.
Many innate immune response proteins recognize foreign nucleic acids from invading pathogens to initiate antiviral signaling. These proteins mostly rely on structural characteristics of the nucleic acids rather than their specific sequences to distinguish self and nonself. One feature utilized by RNA sensors is the extended stretch of double‐stranded RNA (dsRNA) base pairs. However, the criteria for recognizing nonself dsRNAs are rather lenient, and hairpin structure of self‐RNAs can also trigger an immune response. Consequently, aberrant activation of RNA sensors has been reported in numerous human diseases. Yet, in most cases, the activating antigens remain unknown. Recent studies have developed sequencing techniques tailored to specifically capture dsRNAs and identified that various noncoding elements in the nuclear and the mitochondrial genome can generate dsRNAs. Here, the identity of endogenous dsRNAs, their recognition by dsRNA sensors, and their implications in the pathogenesis of human diseases ranging from inflammatory to degenerative are presented.  相似文献   

8.
Cytoplasmic viral RNA and DNA are recognized by RIG-I-like receptors and DNA sensors that include DAI, IFI16, DDX41, and cGAS. The RNA and DNA sensors evoke innate immune responses through the IPS-1 and STING adaptors. IPS-1 and STING activate TBK1 kinase. TBK1 is phosphorylated in its activation loop, leading to IRF3/7 activation and Type I interferon (IFN) production. IPS-1 and STING localize to the mitochondria and endoplasmic reticulum, respectively, whereas it is unclear where phosphorylated TBK1 is localized in response to cytoplasmic viral DNA. Here, we investigated phospho-TBK1 (p-TBK1) subcellular localization using a p-TBK1-specific antibody. Stimulation with vertebrate DNA by transfection increased p-TBK1 levels. Interestingly, stimulation-induced p-TBK1 exhibited mitochondrial localization in HeLa and HepG2 cells and colocalized with mitochondrial IPS-1 and MFN-1. Hepatitis B virus DNA stimulation or herpes simplex virus type-1 infection also induced p-TBK1 mitochondrial localization in HeLa cells, indicating that cytoplasmic viral DNA induces p-TBK1 mitochondrial localization in HeLa cells. In contrast, p-TBK1 did not show mitochondrial localization in RAW264.7, L929, or T-23 cells, and most of p-TBK1 colocalized with STING in response to cytoplasmic DNA in those mammalian cells, indicating cell type-specific localization of p-TBK1 in response to cytoplasmic viral DNA. A previous knockout study showed that mouse IPS-1 was dispensable for Type I IFN production in response to cytoplasmic DNA. However, we found that knockdown of IPS-1 markedly reduced p-TBK1 levels in HeLa cells. Taken together, our data elucidated the cell type-specific subcellular localization of p-TBK1 and a cell type-specific role of IPS-1 in TBK1 activation in response to cytoplasmic viral DNA.  相似文献   

9.
10.
Vertebrate innate immunity is characterized by an effective immune surveillance apparatus, evolved to sense foreign structures, such as proteins or nucleic acids of invading microbes. RIG-I-like receptors (RLRs) are key sensors of viral RNA species in the host cell cytoplasm. Activation of RLRs in response to viral RNA triggers an antiviral defense program through the production of hundreds of antiviral effector proteins including cytokines, chemokines, and host restriction factors that directly interfere with distinct steps in the virus life cycle. To avoid premature or abnormal antiviral and proinflammatory responses, which could have harmful consequences for the host, the signaling activities of RLRs and their common adaptor molecule, MAVS, are delicately controlled by cell-intrinsic regulatory mechanisms. Furthermore, viruses have evolved multiple strategies to modulate RLR-MAVS signal transduction to escape from immune surveillance. Here, we summarize recent progress in our understanding of the regulation of RLR signaling through host factors and viral antagonistic proteins.  相似文献   

11.
12.
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed.  相似文献   

13.
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed.  相似文献   

14.
15.
Viral RNA represents a pattern molecule that can be recognized by RNA sensors in innate immunity. Humans and mice possess cytoplasmic DNA/RNA sensors for detecting viral replication. There are a number of DEAD (Asp‐Glu‐Ala‐Asp; DExD/H) box‐type helicases in mammals, among which retinoic acid‐inducible gene 1 (RIG‐I) and melanoma differentiation‐associated protein 5 (MDA50) are indispensable for RNA sensing; however, they are functionally supported by a number of sensors that directly bind viral RNA or replicative RNA intermediates to convey signals to RIG‐I and MDA5. Some DEAD box helicase members recognize DNA irrespective of the origin. These sensors transmit IFN‐inducing signals through adaptors, including mitochondrial antiviral signaling. Viral double‐stranded RNAs are reportedly sensed by the helicases DDX1, DDX21, DHX36, DHX9, DDX3, DDX41, LGP2 and DDX60, in addition to RIG‐I and MDA5, and induce type I IFNs, thereby blocking viral replication. Humans and mice have all nucleic acid sensors listed here. In the RNA sensing system in chicken, it was found in the present study that most DEAD box helicases are conserved; however, DHX9 is genetically deficient in addition to reported RIG‐I. Based on the current genome databases, similar DHX9 deficiency was observed in ducks and several other bird species. Because chicken, but not duck, was found to be deficient in RIG‐I, the RNA‐sensing system of chicken lacks RIG‐I and DHX9 and is thus more fragile than that of duck or mammal. DHX9 may generally compensate for the function of RIG‐I and deficiency of DHX9 possibly participates in exacerbations of viral infection such as influenza in chickens.  相似文献   

16.
Virus recognition and response by the innate immune system are critical components of host defense against infection. Activation of cell-intrinsic immunity and optimal priming of adaptive immunity against West Nile virus (WNV), an emerging vector-borne virus, depend on recognition by RIG-I and MDA5, two cytosolic pattern recognition receptors (PRRs) of the RIG-I-like receptor (RLR) protein family that recognize viral RNA and activate defense programs that suppress infection. We evaluated the individual functions of RIG-I and MDA5 both in vitro and in vivo in pathogen recognition and control of WNV. Lack of RIG-I or MDA5 alone results in decreased innate immune signaling and virus control in primary cells in vitro and increased mortality in mice. We also generated RIG-I−/− × MDA5−/− double-knockout mice and found that a lack of both RLRs results in a complete absence of innate immune gene induction in target cells of WNV infection and a severe pathogenesis during infection in vivo, similar to findings for animals lacking MAVS, the central adaptor molecule for RLR signaling. We also found that RNA products from WNV-infected cells but not incoming virion RNA display at least two distinct pathogen-associated molecular patterns (PAMPs) containing 5′ triphosphate and double-stranded RNA that are temporally distributed and sensed by RIG-I and MDA5 during infection. Thus, RIG-I and MDA5 are essential PRRs that recognize distinct PAMPs that accumulate during WNV replication. Collectively, these experiments highlight the necessity and function of multiple related, cytoplasmic host sensors in orchestrating an effective immune response against an acute viral infection.  相似文献   

17.
Reactive oxygen species (ROS) are crucial secondary messengers of signaling pathways. Redox-dependent signaling events have been previously described in the innate immune response. However, the mechanism by which ROS modulates anti-viral innate immune signaling is not fully clarified. Here, we report that mitochondria-derived ROS differentially regulate the innate response to DNA and RNA viruses (herpes simplex virus (HSV) and Sendai virus (SeV), respectively), with the cytokine response to HSV being negatively regulated by mitochondrial ROS. Importantly, specific activation of Toll-like receptors (TLRs) and DNA receptors (DNARs) but not retinoic acid inducible gene I (RIG-I)-like receptors (RLRs), led to signaling cascades that were inhibited by mitochondrial ROS production. Thus, localized mitochondrial ROS exerts negative modulation of innate immune responses to the DNA virus HSV-2 but not the RNA virus SeV.  相似文献   

18.
Iida A 《Uirusu》2007,57(1):29-36
Sendai virus (SeV) is an enveloped virus with a nonsegmented negative-strand RNA genome and a member of the paramyxovirus family. We have developed SeV vector which has shown a high efficiently of gene transfer and expression of foreign genes to a wide range of dividing and non-dividing mammalian cells and tissues. One of the characteristics of the vector is that the genome is located exclusively in the cytoplasm of infected cells and does not go through a DNA phase; thus there is no concern about unwanted integration of foreign sequences into chromosomal DNA. Therefore, this new class of "cytoplasmic RNA vector", an RNA vector with cytoplasmic expression, is expected to be a safer and more efficient viral vector than existing vectors for application to human therapy in various fields including gene therapy and vaccination. In this review, I describe development of Sendai virus vector, its application in the field of biotechnology and clinical application aiming to treat for a large number of diseases including cancer, cardiovascular disease, infectious diseases and neurologic disorders.  相似文献   

19.
Recognition of pathogens by the innate immune system is mediated by pattern recognition receptors (PRRs), which recognize specific molecular structures of the infectious agents and subsequently trigger expression of genes involved in host defense. Toll-like receptors (TLRs) represent a well-characterized class of membrane-bound PRRs, and the RNA helicase retinoic acid inducible gene I (RIG-I) has recently been described as a novel cytoplasmic PRR recognizing double-stranded RNA (dsRNA). Here we show that activation of signal transduction and induction of cytokine expression by the paramyxovirus Sendai virus is dependent on virus replication and involves PRRs in a cell-type-dependent manner. While nonimmune cells relied entirely on recognition of dsRNA through RIG-I for activation of an antiviral response, myeloid cells utilized both the single-stranded RNA sensing TLR7 and TLR8 and dsRNA-dependent mechanisms independent of RIG-I, TLR3, and dsRNA-activated protein kinase R to trigger this response. Therefore, there appears to be a large degree of cell-type specificity in the mechanisms used by the host to recognize infecting viruses.  相似文献   

20.
Michael P Gantier 《EMBO reports》2017,18(10):1675-1676
Recognition of foreign nucleic acids by the immune system is essential to host protection against many viral and bacterial infections. It relies on the capacity of innate immune sensors to selectively distinguish self‐ and non‐self‐nucleic acids, on the basis of a variety of parameters including base modifications, sequence composition, length or subcellular localisation. In this issue of EMBO Reports, Luecke et al 1 describe that the sensing of cytoplasmic double‐stranded DNA by the cyclic GMP–AMP (cGAMP) synthase (cGAS) is much more sensitive for longer fragments, when low doses of cytoplasmic DNA are used. This finding repositions length as the predominant factor governing the discrimination between self‐ and non‐self‐cytoplasmic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号