首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hexacyanochromate ion, (Cr(CN)6)3-, was applied to ribonuclease T1 (RNase T1), which specifically cleaves RNA chains at guanylic acid residues. From kinetic studies, this anion was shown to bind to the active site of RNase T1 as a competitive inhibitor. Therefore, the line broadening effect of NMR resonances due to binding of (Cr(CN)6)3- was analyzed for the mapping of the active site of RNase T1. His-40 C2 proton resonance was significantly broadened, following His-92 C2 proton resonance upon binding of (Cr(CN)6)3-, while His-27 C2 proton resonance did not show any appreciable line broadening. Moreover, from the pH dependence of the line broadening effect, the binding of (Cr(CN)6)3- was shown to be controlled by the ionic state of Glu-58. Based on the present NMR results and x-ray crystal structure, the active site structure of RNase T1 is discussed.  相似文献   

2.
I M Russu  N T Ho  C Ho 《Biochemistry》1982,21(20):5031-5043
High-resolution proton nuclear magnetic resonance (NMR) spectroscopy at 250 MHz has been used to titrate 22 individual surface histidyl residues (11 per alpha beta dimer) of human normal adult hemoglobin in both the deoxy and the carbon monoxy forms. The proton resonances of beta 2, beta 143, and beta 146 histidyl residues are assigned by a parallel 1H NMR titration of appropriate mutant and chemically modified hemoglobins. The pK values of the 22 histidyl residues investigated are found to range from 6.35 to 8.07 in the deoxy form and from 6.20 to 7.87 in the carbon monoxy form, in the presence of 0.1 M Bis-Tris or 0.1 M Tris buffer in D2O with chloride ion concentrations varying from 5 to 60 mM at 27 degrees C. Four histidyl residues in the deoxy form and one histidyl residue in the carbon monoxy form are found to have proton nuclear magnetic resonance titration curves that deviate greatly from that predicted by the simple proton dissociation equilibrium of a single ionizable group. The proton nuclear magnetic resonance data are used to ascertain the role of several surface histidyl residues in the Bohr effect of hemoglobin under the above-mentioned experimental conditions. Under these experimental conditions, we have found that (i) the beta 146 histidyl residues do not change their electrostatic environments significantly upon binding of ligand to deoxyhemoglobin and, thus, their contribution to the Bohr effect is negligible, (ii) the beta 2 histidyl residues have a negative contribution to the Bohr effect, and (iii) the total contribution of the 22 histidyl residues investigated here to the Bohr effect is, in magnitude, comparable to the Bohr effect observed experimentally. These results suggest that the molecular mechanism of the Bohr effect proposed by Perutz [Perutz, M.F. (1970) Nature (London) 228, 726-739] is not unique and that the detailed mechanism depends on experimental conditions, such as the solvent composition.  相似文献   

3.
The interaction of unsubstituted purine with polyuridylic acid in D2O solution at neutral pD has been studied by high resolution proton magnetic resonance spectroscopy. The poly U proton resonances were shifted to higher fields by the added purine, indicating that purine binds to the uracil bases of the polymer by base stacking. Severe broadening of the purine proton resonances was also observed, providing strong evidence for the intercalation of purine between adjacent uracil bases of the polymer. The line widths of the poly U proton resonances were not noticeably broadened in the presence of purine; thus, the binding of purine to poly U does not result in a more rigid or ordered structure for the polymer.  相似文献   

4.
The DNA-binding domain of the single-stranded DNA-binding protein IKe GVP was studied by means of 1H nuclear magnetic resonance, through use of oligonucleotides of two and three adenyl residues in length, that were spin-labelled at their 3' and/or 5' termini. These spin-labelled ligands were found to cause line broadening of specific protein resonances when bound to the protein, although they were present in small quantities, i.e. of the order of 0.04 molar equivalent and less. The line broadening of protein resonances was made manifest by means of difference one and two-dimensional spectroscopy. Difference one-dimensional experiments revealed line broadening of the same protein resonances upon binding of either 3' or 5' spin-labelled oligonucleotides. Evidence in favour of the existence of a fixed 5' to 3' orientation in the binding of oligonucleotides to the protein surface was therefore not obtained from the spin-labelled oligonucleotide binding studies. Residue-specific assignments of broadened resonances could not, or could only sparsely, be derived from the difference one-dimensional spectra, because of the tremendous overlap in the aliphatic region of the spectrum. In contrast, such assignments were easily obtained from the difference two-dimensional spectra, which were recorded by means of both total correlated spectroscopy and nuclear Overhauser effect spectroscopy. Difference signals were detected for 15 spin systems; ten out of these were assigned to the residues I29, Y27, S20, G18, R16, T28, K22, Q21, V19 and S17 in the amino acid sequence of IKe GVP; the other five spin systems could be assigned to a phenylalanyl residue, an arginyl or lysyl residue, an aspartic acid or asparagyl residue, a glycyl residue and a glutamic acid or glutamyl residue. From the evaluation of the relative difference signals, it was concluded that the direct surroundings of the spin-label group of the labelled oligonucleotide in the bound state is composed of the first five residues in the former group of residues and the five residues in the latter group.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The binding of gadolinium to a synthetic peptide of 13 amino acid residues representing the calcium binding loop of site 3 of rabbit skeletal troponin C [AcSTnC(103-115)amide] has been studied by using proton nuclear magnetic resonance (1H NMR) spectroscopy. In particular, the proton line broadening and enhanced spin-lattice relaxation have been used to determine proton-metal ion distances for several assigned nuclei in the peptide-metal ion complex. These distances have been used in conjunction with other constraints and a distance algorithm procedure to demonstrate that the structure of the peptide-metal complex as shown by 1H NMR is consistent with the structure of the EF calcium binding loop in the X-ray structure of parvalbumin but that the available 1H NMR distances do not uniquely define the solution structure.  相似文献   

6.
J L Markley 《Biochemistry》1975,14(16):554-561
The microenvironment of histidine-48 of bovine pancreatic ribonuclease A was investigated by proton magnetic resonance spectroscopy (1H NMR) using partially deuterated enzyme in which resolution of the C(2)-H resonance of histidine-48 was simplified. The NMR titration curves at 100 and 250 MHz of histidine-48 of ribonuclease A are discontinuous both for the enzyme alone in 0.3 M chloride and for its complex with cytidine 3'-phosphate. This suggests that titration of histidine-48 occurs only as the result of a slow conformational transition. The sum of the peaks corresponding to histidine-48 in the acid-stable and base-stable forms of the enzyme is less than one proton in the transition region, which indicates that there exists at least one intermediate conformational form of the enzyme. The transition from the acid-stable form to an intermediate form has a pHmid of 5.6, and the transition from an intermediate form to the base-stable form has a pHmid of 6.9. In ribonuclease S and in ribonuclease A in the presence of 0.3 M acetate, the titration curve of histidine-48 is continuous, and the area of the peak is uniform throughout the titration. Proton NMR difference spectra at 100 and 250 MHz reveal a pH-induced conformational change with a pHmid of 5.7 that affects the chemical shift of a single tyrosine residue. This conformational transition is absent in ribonuclease S and is altered in ribonuclease A by the presence of either acetate or cytidine 3'-monophosphate. It is postulated that the same conformational transition is responsible for both the tyrosine perturbation and the disappearance of the histidine-48 peak observed in the acid-stable form of the enzyme. It is proposed that the perturbed tyrosine is tyrosine-25. The transition with pHmid 5.6 is attributed to dissociation of aspartic acid-14, and the transition with pHmid 6.9 is assigned to dissociation of histidine-48. A peak in the aromatic region that moves upfield on addition of the competitive inhibitor cytidine 3'-monophosphate is assigned to a tyrosine, and evidence is presented that this tyrosine is tyrosine-25. Inhibitor binding appears to induce a conformational change in the histidine-48/tyrosine-25 region which is remote from the active site.  相似文献   

7.
G Musci  K Koga  L J Berliner 《Biochemistry》1988,27(4):1260-1265
The unique methionine residue of bovine alpha-lactalbumin was modified by irreversible alkylation with the bromoacetamido nitroxide spin-label 4-(2-bromoacetamido)-2,2,6,6-tetramethylpiperidine-N-oxyl. The line shape of the electron spin resonance (ESR) spectrum was indicative of a fairly mobile spin-label and was sensitive to the calcium-induced conformational change. Paramagnetic broadening of the spin-label ESR lines by a Gd(III) ion substituted at the high-affinity calcium site of the protein yielded a distance between the spin-label and the metal-binding site of 8.0 +/- 1.0 A. The extent of the paramagnetic line broadening by the covalently attached nitroxide spin-label on the proton resonances of several amino acid residues of the protein at 500 MHz allowed estimation of intramolecular distances between the methionine-90 residue and several resolvable protons.  相似文献   

8.
Cycloheximide-ribosome interactions from sensitive and resistant organisms were studied by proton magnetic resonance spectroscopic techniques. The two methyl resonances of cycloheximide upon interaction with ribosomes from Saccharomyces cerevisiae showed preferential broadening. Comparison of cycloheximide line broadening as effected by ribosomes from S. cerevisiae (sensitive) and Microsporum canis (resistant) revealed that less cycloheximide is bound to the M. canis ribosomes. From the decrease in line broadening observed with increasing temperature it may be concluded that cycloheximide-ribosome interaction is a fast exchange reaction. Tetracycline did not compete with cycloheximide for binding site(s) on the ribosomes of S. cerevisiae.  相似文献   

9.
M Sette  M Paci  A Desideri  G Rotilio 《Biochemistry》1992,31(49):12410-12415
The binding of formate to bovine Cu,Zn superoxide dismutase has been studied by NMR spectroscopy. The distance between the copper ion and the proton covalently bound to formate has been evaluated from the broadening of the resonance of such proton. The effect on the copper-coordinated water molecule was evaluated from the bulk water relaxation effect by pulsed low-resolution NMR. The broadening of the resonance due to the formate carboxyl in the 13C NMR spectrum gave further indications about the carbon-copper distance thus providing information about the orientation of the formate ion. Changes of isotropically shifted resonances of the Cu,Co enzyme, where cobalt substitutes the native zinc, indicate that rearrangements of imidazoles of the liganding histidines occur upon binding. Transient NOE experiments gave indication of the proximity of the formate proton to resonance H of the NMR spectrum assigned to the imidazole proton of the copper-liganding His 118 of the active site. 2D NMR NOESY experiments made clear that no important rearrangement of the liganding histidines occurred in the presence of a saturating amount of formate. The absence of relevant changes of the intensity of NOE cross-peaks which are sensitive to interatomic distances in the active site revealed that only slight changes have occurred. Molecular graphics representation on the basis of all the information obtained allowed us to locate the formate in the proximity of the active site. The formate binding occurs via hydrogen bonds through the carboxylate ion and the NH groups of the side chains of Arg 141 which is external to the copper coordination sphere and faces the active site of the enzyme.  相似文献   

10.
The histidyl residues of bovine pancreatic ribonuclease A (RNase A) play a crucial role in enzymatic activity. Diethylpyrocarbonate (DEPC) is a potent inhibitor of RNase A, and its precise sites of action on the imidazole rings of the four histidyl residues of RNase A are not clearly defined. We have used a multidisciplinary approach including enzyme assay, calculation of accessible surface area (ASA), isoelectric pH gradient technique, fluorescence investigations, circular dichroism spectroscopy, differential scanning calorimetry, and 1H NMR analysis to study the sites of DEPC interaction with the imidazole rings of the four histidyl residues. Our results demonstrate that among the histidyl residues of RNase A, His48 is not accessible to react with DEPC. However, the sequential carbethoxylation of the imidazole rings of His119, His105, and His12 occurs on the nitrogen atoms of Ndelta, Nepsilon, and Nepsilon, respectively. Carbethoxylation of His119 was followed by conversion of the A conformation to the B conformation in the active site. However, the carbethoxylation of His12 was accompanied by a second spatial rotation of the corresponding imidazole ring in the active site to adopt a new conformation. These conformation changes are accompanied by subsequent decrements in the thermal stability of the protein. Therefore, these findings reinforce the important structural roles of the spatial positions for His119 and His12 in the active site of RNase A.  相似文献   

11.
M R Busch  J E Mace  N T Ho  C Ho 《Biochemistry》1991,30(7):1865-1877
Assessment of the roles of the carboxyl-terminal beta 146 histidyl residues in the alkaline Bohr effect in human normal adult hemoglobin by high-resolution proton nuclear magnetic resonance spectroscopy requires assignment of the resonances corresponding to these residues. Previous resonance assignments in low ionic strength buffers for the beta 146 histidyl residue in the carbonmonoxy form of hemoglobin have been controversial [see Ho and Russu (1987) Biochemistry 26, 6299-6305; and references therein]. By a careful spectroscopic study of human normal adult hemoglobin, enzymatically prepared des(His146 beta)-hemoglobin, and the mutant hemoglobins Cowtown (beta 146His----Leu) and York (beta 146His----Pro), we have resolved some of these conflicting results. By a close incremental variation of pH over a wide range in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer, a single resonance has been found to be consistently missing in the proton nuclear magnetic resonance spectra of these hemoglobin variants. The spectra of each of these variants show additional perturbations; therefore, the assignment has been confirmed by an incremental titration of buffer conditions to benchmark conditions, i.e., 0.2 M phosphate, where the assignment of this resonance is unambiguous. The strategy of incremental titration of buffer conditions also allows extension of this resonance assignment to spectra taken in 0.1 M [bis(2-hydroxyethyl)amino]tris(hydroxymethyl)methane buffer. Participation of the beta 146 histidyl residues in the Bohr effect has been calculated from the pK values determined for the assigned resonances in chloride-free 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer. Our results indicate that the contribution of the beta 146 histidyl residues is 0.52 H+/hemoglobin tetramer at pH 7.6, markedly less than the 0.8 H+/hemoglobin tetramer estimated by study of the mutant hemoglobin Cowtown (beta 146His----Leu) by Shih and Perutz [(1987) J. Mol. Biol. 195, 419-422]. We have found that at least two histidyl residues in the carbonmonoxy form of this mutant have pK values that are perturbed, and we suggest that these pK differences may in part account for this discrepancy. Furthermore, summation of the positive contribution of the beta 146 histidyl residues and the negative contribution of the beta 2 histidyl residues to the maximum Bohr effect measured in 0.1 M N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid buffer suggests that additional sites in the hemoglobin molecule account for proton release upon ligation greater than the contribution of the beta 146 histidyl residues.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Proteins often require cofactors to perform their biological functions and must fold in the presence of their cognate ligands. Using circular dichroism spectroscopy. we investigated the effects of divalent metal binding upon the folding pathway of Escherichia coli RNase HI. This enzyme binds divalent metal in its active site, which is proximal to the folding core of RNase HI as defined by hydrogen/deuterium exchange studies. Metal binding increases the apparent stability of native RNase HI chiefly by reducing the unfolding rate. As with the apo-form of the protein, refolding from high denaturant concentrations in the presence of Mg2+ follows three-state kinetics: formation of a rapid burst phase followed by measurable single exponential kinetics. Therefore, the overall folding pathway of RNase HI is minimally perturbed by the presence of metal ions. Our results indicate that the metal cofactor enters the active site pocket only after the enzyme reaches its native fold, and therefore, divalent metal binding stabilizes the protein by decreasing its unfolding rate. Furthermore, the binding of the cofactor is dependent upon a carboxylate critical for activity (Asp10). A mutation in this residue (D10A) alters the folding kinetics in the absence of metal ions such that they are similar to those observed for the unaltered enzyme in the presence of metal.  相似文献   

13.
The interactions of RNase A with cytidine 3'-monophosphate (3'-CMP) and deoxycytidyl-3',5'-deoxyadenosine (d(CpA)) were analyzed by X-ray crystallography. The 3'-CMP complex and the native structure were determined from trigonal crystals, and the d(CpA) complex from monoclinic crystals. The differences between the overall structures are concentrated in loop regions and are relatively small. The protein-inhibitor contacts are interpreted in terms of the catalytic mechanism. The general base His 12 interacts with the 2' oxygen, as does the electrostatic catalyst Lys 41. The general acid His 119 has 2 conformations (A and B) in the native structure and is found in, respectively, the A and the B conformation in the d(CpA) and the 3'-CMP complex. From the present structures and from a comparison with RNase T1, we propose that His 119 is active in the A conformation. The structure of the d(CpA) complex permits a detailed analysis of the downstream binding site, which includes His 119 and Asn 71. The comparison of the present RNase A structures with an inhibitor complex of RNase T1 shows that there are important similarities in the active sites of these 2 enzymes, despite the absence of any sequence homology. The water molecules were analyzed in order to identify conserved water sites. Seventeen water sites were found to be conserved in RNase A structures from 5 different space groups. It is proposed that 7 of those water molecules play a role in the binding of the N-terminal helix to the rest of the protein and in the stabilization of the active site.  相似文献   

14.
The affinity of an antibody for its ligand 2-phenyloxazolone was improved by protein design. For the design two-dimensional nuclear magnetic resonance spectroscopy, protein engineering and molecular modelling were used in an interactive scheme. Initially the binding site was localized with the help of transferred nuclear Overhauser enhancement signals from two, site specifically assigned tyrosine side-chains in the complementarity-determining regions of the antibody to the ligand 4-glycyl-2-phenyloxazolone. On their basis the hapten was placed into a model of the Fv-fragment built according to the principles of canonical antibody structures. From the model, unfavourable contacts between hapten and an aspartyl side-chain in complementarity-determining region 3 of the heavy chain were predicted. Substitution of the aspartyl residue by alanine resulted in a threefold increase in affinity of the antibody Fv-fragment for two hapten derivatives when compared with the wild-type. Nuclear magnetic resonance analysis of the improved Fv-fragment revealed an interaction between the alpha-carbon proton of alanyl residue with the ligand, which was not seen for the aspartyl residue. This interaction is not entirely in accordance with the model, which predicts an interaction between the side-chain of this residue and the hapten. However, it shows that by combined use of nuclear magnetic resonance analysis and molecular modelling, a residue that is critical for antigen binding was identified, whose mutation allowed the design of an improved antibody combining site.  相似文献   

15.
A unique resonance in the 13C NMR spectrum of [13C]methylated ribonuclease A has been assigned to a N epsilon, N-dimethylated active site residue, lysine 41. The chemical shift of this resonance was studied over the pH range 3 to 11, and the titration curve showed two inflection points, at pH 5.7 and 9.0. The higher pKa, designated pKa1, was assigned to the ionization of the lysyl residue itself while the pKa of 5.7, designated pKa2, was assigned on the basis of its pKa to the ionization of a histidyl residue which is somehow coupled to lysine 41. Both pKa values are measurably perturbed by the binding of active site ligands including nucleotides, nucleosides, phosphate, and sulfate. In most cases, the alterations in pKa values induced by the ligands were larger for pKa2. The ligand-induced perturbations in pKa2 generally paralleled those reported for histidine 12, another active site residue (Griffin, J. H., Schechter, A. N., and Cohen, J. S. (1973) Ann. N. Y. Acad. Sci. 222, 693-708). The sensitivity of the N epsilon, N-dimethylated lysine 41 resonance to the histidyl ionization may result from a conformational change in the active site region of ribonuclease which is coupled to the histidyl ionization. This coupling between lysine 41 and another ribonuclease residue, which has not been documented previously, offers new insight into the interrelationship between residues in the active site of this well characterized enzyme.  相似文献   

16.
The binding of oligopeptides of general structure Lys-X-Lys (where X is an aromatic residue) to several polynucleotides has been studied by fluorescence spectroscopy. Two types of complexes are formed, both involving electrostatic interactions between lysyl residues and phosphate groups as shown by the ionic strength and pH dependence of binding. The fluorescence quantum yield of the first complex is identical with that of the free peptide. The other complex involves a stacking of the nucleic acid bases with the aromatic amino acid whose fluorescence is quenched. Fluorescence data have been quantitatively analyzed according to a model involving these two types of complexes. Association constants and the size of binding sites have been determined. Stacking interactions are favored in single-stranded polynucleotides as compared to double-stranded ones. A short oligopeptide such as Lys-X-Lys is thus able to distinguish between single-stranded and double-stranded nucleic acids. Fluorescence results are compared to those obtained by proton magnetic resonance and circular dichroism.  相似文献   

17.
The azide complex of horseradish peroxidase was studied by high resolution 1H and 15N NMR spectroscopy and by the temperature-jump method. The heme peripheral methyl proton peaks and the ligand 15N resonance were resolved to show that binding of azide by horseradish peroxidase occurs only in acidic solution below pH 6.5. It was also found that the chemical exchange rate of azide with the ferric enzyme was much faster on the 1H and 15N NMR time scale. This was further substantiated by kinetics of azide binding by horseradish peroxidase where the chemical exchange rate was confirmed to be in the microseconds range at pH 5.0 and 23 degrees C. This rate is salient in usual ligand exchange reactions in hemoproteins so far reported. pH dependences of the first order association and dissociation rate constants were also studied by the temperature-jump method to suggest a strong linkage of the azide binding with a proton uptake of an amino acid residue on the enzyme. These results were compared with the case of horse metmyoglobin and were interpreted to indicate that a heme-linked ionizable group on the enzyme facilitates the fast entry of the ligand to the coordination site. A histidyl residue is a possible candidate for the ionizable group of the enzyme.  相似文献   

18.
The interaction of aromatic donor molecules with manganese(III) protoporphyrin-apohorseradish peroxidase complex [Mn(III)HRP] was investigated by optical difference spectroscopy and relaxation rate measurements of 1H resonances of aromatic donor molecules (at 500 MHz). pH dependence of substrate proton resonance line-widths indicated that the binding was facilitated by protonation of an amino acid residue (with a pKa of 6.1), which is presumably distal histidine. Dissociation constants were evaluated from both optical difference spectroscopy and 1H-NMR relaxation measurements (pH 6.1). The dissociation constants of aromatic donor molecules were not affected by the presence of excess of I-, CN- and SCN-. From competitive binding studies it was shown that all these aromatic donor molecules bind to Mn(III)HRP at the same site, which is different from the binding site of I-, CN- and SCN-. Comparison of the dissociation constants between the different substrates suggests that hydrogen bonding of the donors with distal histidyl amino acid and hydrophobic interaction between the donors and active site contribute significantly towards the associating forces. Free energy, entropy and enthalpy changes associated with the Mn(III)HRP-substrate equilibrium have been evaluated. These thermodynamic parameters were found to be all negative. Distances of the substrate protons from the paramagnetic manganese ion of Mn(III)HRP were found to be in the range of 7.7 to 9.4 A. The Kd values, the thermodynamic parameters and the distances of the bound aromatic donor protons from metal center in the case of Mn(III)HRP were found to be very similar as in the case of native Fe(III)HRP.  相似文献   

19.
R S Ehrlich  R F Colman 《Biochemistry》1989,28(5):2058-2065
The metal activator site of NADP-dependent isocitrate dehydrogenase from pig heart has been probed by using 113Cd and 25Mg NMR as well as manganese paramagnetic relaxation of nuclei in the fast-exchanging ligands alpha-ketoglutarate and adenosine 2'-monophosphate. Cadmium NMR shows that cadmium, bound to the enzyme in the presence of isocitrate, has a resonance at 9 ppm relative to cadmium perchlorate, while the free Cd-isocitrate complex has a resonance at -23 ppm. Comparison with model compounds and previously studied proteins indicates that cadmium is coordinated with six oxygen ligands. Measurements as a function of cadmium concentration give a dissociation constant of 66 microM and a dissociation rate constant of 1.5 X 10(4) s-1 at pH 7.0. 25Mg NMR demonstrates that the line width of the magnesium resonance is increased upon binding to isocitrate dehydrogenase. A further increase in line width is observed upon addition of isocitrate. Measurement of line widths as a function of temperature reveals that in the binary complex between magnesium and enzyme, exchange is the major contributor to broadening while in the ternary complex containing isocitrate, the intrinsic relaxation in the bound state is also important, suggesting an increase in the dissociation rate constant for magnesium from the ternary complex. Paramagnetic relaxation studies of nuclei of alpha-ketoglutarate, bicarbonate, and adenosine 2'-monophosphate locate the divalent metal within the active site. The results with adenosine 2'-monophosphate show that atoms in the adenosine moiety of the coenzyme are at least 8 A from the metal site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The C2H resonance of the active site histidine residue designated AS-2, which has the lower pKa of the two active site histidines, has been correlated in both RNase A and RNase S by comparing the pH 3 to 5.5 regions of the chemical shift titration curves, the effect of the inhibitor CMP-3′ on the chemical shifts at pH 4.0, and the effect of Cu II on the line widths at pH 3.6. It has been demonstrated that resonance AS-2 is absent in the spectrum of RNase S′ reconstituted using S-peptide deuterated at the C2 of His 12, and in that of the RNase S′-CMP-3′ complex. We thus demonstrate that histidine AS-2 is in fact His 12 in both enzymes. This finding is in agreement with out previous assignment of the exchangeable NH proton in RNase A to His 12, but reverses the assignments of the active site histidine C2H resonances made earlier by other authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号