首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We have investigated whether tyrosine kinases modify the activity of voltage-dependent Ba(2+) currents (I(Ba)) recorded from guinea-pig gastric myocytes by use of patch-clamp techniques. All experiments were carried on single smooth muscle cells, dispersed from the circular layer of the guinea-pig gastric antrum. Genistein ( > or = 10 microM), a specific tyrosine kinase inhibitor, reduced the peak amplitude of I(Ba) in a voltage- and concentration-dependent manner. Daidzein ( > or = 30 microM), an inactive analog of genistein, also inhibited I(Ba) in a concentration-dependent manner. Similarly, other types of tyrosine kinase inhibitors (lavendustin A and tyrphostin 23) suppressed the peak amplitude of I(Ba) in a concentration-dependent manner. These results indicate that tyrosine kinases may be essential to regulate Ca(2+) mobilization through voltage-dependent Ca(2+) channels in gastric myocytes.  相似文献   

2.
Voltage-operated calcium channels are modulated by tyrosine kinases in different cell types. In this study, I(Ba) was measured by the whole cell voltage-clamp technique in single COS-7 cells overexpressing the Ca(v)2.2 calcium channels encoding N-type currents. Bath application of genistein, a nonselective PTK inhibitor (50-300 microM), concentration-dependently inhibited calcium channel currents, whereas the inactive structural analogue, daidzein, was without effect over the same concentration range. Similarly, PP1, a src family-selective tyrosine kinase inhibitor, inhibited I(Ba) in a concentration-dependent manner (500 nM-5 microM) over a range of test potentials. Expression of the Ca(v)2.2alpha1 (alpha(1B)) subunit alone gave rise to functional channels, and genistein (100 microM) also inhibited currents elicited by the alpha(1B) subunit alone. These results indicate that tyrosine kinase inhibitors are likely to inhibit Ca(v)2.2 calcium channels via an action on the pore-forming alpha(1) subunit and suggest that an endogenous member of the Src family may play a physiological role in modulating these channels.  相似文献   

3.
We examined the effects of the tyrosine kinase (TK) inhibitors, genistein, and tyrphostin (RG-50864) on the contractile action of epidermal growth factor - urogastrone (EGF-URO), transforming growth factor-alpha (TGF-alpha), and other agonists in two smooth muscle bioassay systems (guinea pig gastric longitudinal muscle, LM, and circular muscle, CM). We also studied the inhibition by tyrphostin of EGF-URO stimulated protein phosphorylation in identical smooth muscle strips. The selective inhibition by genistein and tyrphostin of EGF-URO and TGF-alpha induced contraction, but not of carbachol- and bradykinin-mediated contraction, occurred at much lower concentrations (genistein, less than 7.4 microM (2 micrograms/mL); tyrphostin, less than 20 microM (4 micrograms/mL)) than those used in previously published studies with these TK inhibitors. In LM tissue, the IC50 values were for genistein 1.1 +/- 0.1 microM (0.30 micrograms/mL; mean +/- SEM) and 3.6 +/- 0.5 microM (0.74 micrograms/mL) for tyrphostin, yielding a molar potency ratio (GS: TP) of 1:3 in the longitudinal preparation. In CM tissue, the IC50 values were 3.0 +/- 0.3 microM (0.81 micrograms/mL) for genistein and 2.4 +/- 0.2 microM (0.49 micrograms/mL) for tyrphostin, yielding a molar potency ratio (GS:TP) of 1.0:0.8 in the circular strips. The inhibition by genistein and tyrphostin of EGF-URO and TGF-alpha mediated contraction was rapid (beginning within minutes) and was reversible upon washing the preparations free from the enzyme inhibitors. In intact tissue strips studied under bioassay conditions, tyrphostin (40 microM) also blocked EGF-URO triggered phosphorylation of substrates detected on Western blots using monoclonal antiphosphotyrosine antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Contractile agonists may stimulate mitogenic responses in airway smooth muscle by mechanisms that involve tyrosine kinases. The role of contractile agonist-evoked activation of tyrosine kinases in contractile signaling is not clear. We addressed this issue using cultured rat airway smooth muscle cells. In these cells, serotonin (5-HT, 1 microM) caused contraction (quantitated by a decrease in cell area), which was blocked by the tyrosine kinase inhibitor genistein (40 microM). Genistein and tyrphostin 23 (40 and 10 microM, respectively) significantly decreased 5-HT-evoked peak Ca(2+) responses, and the effect of genistein could be observed in the absence of extracellular Ca(2+). The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 (30 microM) had no significant effect on peak Ca(2+) levels. Western analysis of cell extracts revealed that 5-HT caused a significant increase in tyrosine phosphorylation of proteins with molecular masses of approximately 70 kDa within 10 s of stimulation but no measurable tyrosine phosphorylation of the gamma isoform of phospholipase C (PLC-gamma). Tyrosine phosphorylation was inhibited by genistein. Furthermore, genistein (40 microM) significantly attenuated 5-HT-induced inositol phosphate production. We conclude that in airway smooth muscle contractile agonists acting on G protein-coupled receptors may activate tyrosine kinase(s), which in turn modulate calcium signaling by affecting, directly or indirectly, PLC-beta activity. It is unlikely that PLC-gamma or the mitogen-activated protein kinase pathway is involved in Ca(2+) signaling to 5-HT.  相似文献   

5.
In the present study, we have investigated the effects of protein tyrosine kinase (PTK) inhibitors on the Ca(V)3.1 calcium channel stably transfected in HEK293 cells using the whole-cell configuration of the patch-clamp technique. We have tested two different tyrosine kinase inhibitors, genistein and tyrphostin AG213, and their inactive analogs, genistin and tyrphostin AG9. Bath application of genistein, but not genistin, decreased the T-type calcium current amplitude in a concentration-dependent manner with an IC(50) of 24.7+/-2.0 microM. This effect of genistein was accompanied by deceleration of channel activation and acceleration of channel inactivation. Intracellular application of neither genistein nor genistin had a significant effect on the calcium current. Extracellular application of 50 microM tyrphostin AG213 and its inactive analogue, tyrphostin AG9, did not affect the current through the Ca(V)3.1 channel. The effect of genistein on the channel was also not affected by the presence of catalytically active PTK, p60(c-src) inside the cell. We have concluded that genistein directly inhibited the channel. This mechanism does not involve a PTK-dependent pathway. The alteration of the channel kinetics by genistein suggests an interaction with the voltage sensor of the channel together with the channel pore occlusion.  相似文献   

6.
Prostaglandin E2 (PGE2) can interact with at least four cell surface receptors (EP1-EP4) in smooth muscle, which evokes a variety of intracellular responses depending on the G protein to which the cell surface receptors are coupled. The activation of G protein-coupled receptors and receptor tyrosine kinases can lead to the phosphorylation of tyrosine residues of various cellular proteins. The aim of this study was to examine the role of tyrosine phosphorylation in PGE2, vanadate and carbachol-evoked contractions. PGE2, vanadate, and carbachol induced contractile motor responses in the longitudinal smooth muscle of rabbit duodenum. PGE2-evoked contractions decreased in the presence of genistein or tyrphostin B44. PGE2-evoked contractions increased in the presence of vanadate. Vanadate-evoked contractions decreased in the presence of genistein. In contrast, tyrphostin 47 increased the vanadate-evoked contractions. Vanadate-evoked contractions were reduced in the presence of Ca2+-free solutions, verapamil, or indomethacin. U-73122 decreased PGE2-evoked contractions. Carbachol-evoked contractions decreased in the presence of genistein, tyrphostin B44 or tyrphostin 47. Our results suggest that PGE2, vanadate or carbachol-evoked contractions are mediated by protein tyrosine phosphorylation. Protein tyrosine phosphorylation might cause an increase in calcium influx through voltage-dependent channels and the release of prostaglandins in the longitudinal smooth muscle of the rabbit duodenum.  相似文献   

7.
Abstract: To study cross-talk mechanisms in rat pinealocytes, the role of tyrosine kinase or kinases in the regulation of adrenergic-stimulated cyclic AMP production was investigated. Both norepinephrine- and isoproterenol-stimulated cyclic AMP accumulation were increased by two distinct tyrosine kinase inhibitors, genistein or erbstatin, in a concentration-dependent manner. A similar increase was observed with two other inhibitors, tyrphostin B44 and herbimycin. In contrast, daidzein, an inactive analogue of genistein, was ineffective; whereas vanadate, a phosphotyrosine phosphatase inhibitor, reduced the adrenergic-stimulated cyclic AMP accumulation. The tyrosine kinase inhibitors were effective in potentiating the cholera toxin-or forskolin-stimulated cyclic AMP accumulation, indicating that their sites of action are at the postreceptor level. Neither an activator nor inhibitors of protein kinase C influenced the potentiation of the cyclic AMP responses by genistein, suggesting that the potentiation effect by tyrosine kinase inhibitors does not involve the phospholipase C/protein kinase C pathway. However, when the phosphodiesterase was inhibited by isobutylmethylxanthine, genistein failed to potentiate and vanadate did not inhibit the adrenergic-stimulated cyclic AMP accumulation, indicating that the phosphodiesterase is a probable site of action for these inhibitors. These results suggest that cyclic AMP metabolism in the pinealocytes is tonically inhibited by tyrosine kinase acting on the cyclic AMP phosphodiesterase.  相似文献   

8.
Rudrabhatla P  Rajasekharan R 《Biochemistry》2004,43(38):12123-12132
Serine/threonine/tyrosine (STY) protein kinase from peanut is developmentally regulated and is induced by abiotic stresses. In addition, STY protein kinase activity is regulated by tyrosine phosphorylation. Kinetic mechanism of plant dual specificity protein kinases is not studied so far. Recombinant STY protein kinase occurs as a monomer in solution as shown by gel filtration chromatography. The relative phosphorylation rate of kinase against increasing enzyme concentrations follows a first-order kinetics indicating an intramolecular phosphorylation mechanism. Moreover, the active recombinant STY protein kinase could not transphosphorylate a kinase-deficient mutant of STY protein kinase. Molecular docking studies revealed that the tyrosine kinase inhibitors bind the protein kinase at the same region as ATP. STY protein kinase activity was inhibited by the tyrosine kinase inhibitors, and the inhibitor potency series against the recombinant STY protein kinase was tyrphostin > genistein > staurosporine. The inhibition constant (K(i)), and the IC(50) value of STY protein kinase for tyrosine kinase inhibitors with ATP and histone are discussed. All the inhibitors competed with ATP. Genistein was an uncompetitive inhibitor with histone, whereas staurosporine and tyrphostin were linear mixed type noncompetitive inhibitors with histone. Molecular docking and kinetic analysis revealed that Y148F mutant of the "ATP-binding loop" and Y297F mutant of the "activation loop" showed a dramatic increase in K(i) values for genistein and tyrphostin with respect to wild-type STY protein kinase. Data presented here provide the direct evidence on the mechanism of inhibition of plant protein kinases by tyrosine kinase inhibitors. This study also suggests that tyrosine kinase inhibitors may be useful in unraveling the plant tyrosine phosphorylation signaling cascades.  相似文献   

9.
The L-type calcium channel is the major calcium influx pathway in vascular smooth muscle and is regulated by integrin ligands, suggesting an important link between extracellular matrix and vascular tone regulation in tissue injury and remodeling. We examined the role of integrin-linked tyrosine kinases and focal adhesion proteins in regulation of L-type calcium current in single vascular myocytes. Soluble tyrosine kinase inhibitors blocked the increase in current produced by alpha(5) integrin antibody or fibronectin, whereas tyrosine phosphatase inhibition enhanced the effect. Cell dialysis with an antibody to focal adhesion kinase or with FRNK, the C-terminal noncatalytic domain of focal adhesion kinase, produced moderate (24 or 18%, respectively) inhibition of basal current but much greater inhibition (63 or 68%, respectively) of integrin-enhanced current. A c-Src antibody and peptide inhibitors of the Src homology-2 domain or a putative Src tyrosine phosphorylation site on the channel produced similar inhibition. Antibodies to the cytoskeletal proteins paxillin and vinculin, but not alpha-actinin, inhibited integrin-dependent current by 65-80%. Therefore, alpha(5)beta(1) integrin appears to regulate a tyrosine phosphorylation cascade involving Src and various focal adhesion proteins that control the function of the L-type calcium channel. This interaction may represent a novel mechanism for control of calcium influx in vascular smooth muscle and other cell types.  相似文献   

10.
Smooth muscle contractility and protein tyrosine phosphorylation   总被引:1,自引:0,他引:1  
During the last 5 years several studies have documented an involvement of protein tyrosine kinases (PTKs) in smooth muscle contraction and Ca2+mobilization. Most of these studies have utilized highly selective inhibitors of PTKs, genistein and tyrphostin and have shown that these inhibitors attenuated smooth muscle contraction induced by growth factors - epidermal growth factor (EGF) and platelet derived growth factor (PDGF) and several vasoactive peptides. It has also been demonstrated that inhibitors of protein tyrosine phosphatases (PTPases) such as vanadate and pervanadate mimic growth factors and vasoactive peptides in causing the contraction of smooth muscle. In this brief review, we have summarized some of the recent observations suggesting a possible link between protein tyrosine phosphorylation pathway and smooth muscle contraction.  相似文献   

11.
Abstract: Nicotine-induced catecholamine secretion in bovine adrenomedullary chromaffin cells is accompanied by rapid tyrosine phosphorylation of multiple cellular proteins, most notably the mitogen-activated protein kinases (MAPKs). The requirement for activation of tyrosine kinases and MAPKs in chromaffin cell exocytosis was investigated using a panel of tyrosine kinase inhibitors. Genistein and tyrphostin 23, two compounds that inhibit tyrosine kinases by distinct mechanisms, were found to inhibit secretion by >90% in cells stimulated by nicotine, 55 m M KCI, or the Ca2+ ionophore A23187. Inhibition of secretion induced by all three secretagogues correlated with a block in both protein tyrosine phosphorylation and activation of the MAPKs and their activators (MEKs) in situ. However, neither genistein nor tyrphostin 23 inhibited the activities of the MAPKs or MEKs in vitro. These results indicate that the target(s) of inhibition lie down-stream of Ca2+ influx and upstream of MEK activation. This Ca2+-activated tyrosine kinase activity could not be accounted for entirely by c-Src or Fyn (two nonreceptor tyrosine kinases that are expressed abundantly in chromaffin cells), because their in vitro kinase activities were not inhibited by tyrphostin 23 and only partially inhibited by genistein. These results demonstrate that an unidentified Ca2+-activated tyrosine kinase(s) is required for MAPK activation and exocytosis in chromaffin cells and suggest that MAPK participates in the regulation of secretion.  相似文献   

12.
The present study was designed to investigate whether large conductance Ca2+‐activated K+ (BK) channels were regulated by epidermal growth factor (EGF) receptor (EGFR) tyrosine kinase. BK current and channel tyrosine phosphorylation level were measured in BK‐HEK 293 cells expressing both functional α‐subunits and the auxiliary β1‐subunits using electrophysiology, immunoprecipitation and Western blotting approaches, respectively, and the function of rat cerebral basilar arteries was determined with a wire myography system. We found that BK current in BK‐HEK 293 cells was increased by the broad spectrum protein tyrosine kinase (PTK) inhibitor genistein and the selective EGFR tyrosine kinase inhibitor AG556, one of the known tyrphostin. The effect of genistein or AG556 was antagonized by the protein tyrosine phosphatase (PTP) inhibitor orthovanadate. On the other hand, orthovanadate or EGF decreased BK current, and the effect was counteracted by AG556. The tyrosine phosphorylation level of BK channels (α‐ and β1‐subunits) was increased by EGF and orthovanadate, while decreased by genistein and AG556, and the reduced tyrosine phosphorylation of BK channels by genistein or AG556 was reversed by orthovanadate. Interestingly, AG556 induced a remarkable enhancement of BK current in rat cerebral artery smooth muscle cells and relaxation of pre‐contracted rat cerebral basilar arteries with denuded endothelium, and these effects were antagonized by the BK channel blocker paxilline or orthovanadate. These results demonstrate that tyrosine phosphorylation of BK channels by EGFR kinase decreases the channel activity, and inhibition of EGFR kinase by AG556 enhances the channel activity and dilates rat cerebral basilar arteries.  相似文献   

13.
The smooth muscle cells of resistance arteries depolarize and contract when intravascular pressure is elevated. This is a central characteristic of myogenic tone, which plays an important role in regulation of blood flow in many vascular beds. Pressure-induced vascular smooth muscle depolarization depends in part on the activation of cation channels. Here, we show that activation of these smooth muscle cation channels and pressure-induced depolarization are mediated by protein kinase C in cerebral resistance arteries. Diacylglycerol, phorbol myristate acetate, and cell swelling activate a cation current that we have previously shown is mediated by transient receptor potential channels. These currents, as well as the smooth muscle cell depolarizations of intact arteries induced by diacylglycerol, phorbol ester, and elevation of intravascular pressure, are nearly eliminated by protein kinase C inhibitors. These results suggest a major mechanism of myogenic tone involves mechanotransduction through phospholipase C, diacylglycerol production, and protein kinase C activation, which increase cation channel activity. The associated depolarization activates L-type calcium channels, leading to increased intracellular calcium and vasoconstriction.  相似文献   

14.
The effects of genistein, a protein tyrosine kinase (PTK) inhibitor, on voltage-dependent K(+) (Kv) 4.3 channel were examined using the whole cell patch-clamp techniques. Genistein inhibited Kv4.3 in a reversible, concentration-dependent manner with an IC(50) of 124.78 μM. Other PTK inhibitors (tyrphostin 23, tyrphostin 25, lavendustin A) had no effect on genistein-induced inhibition of Kv4.3. Orthovanadate, an inhibitor of protein phosphatases, did not reverse the inhibition of Kv4.3 by genistein. We also tested the effects of two inactive structural analogs: genistin and daidzein. Whereas Kv4.3 was unaffected by genistin, daidzein inhibited Kv4.3, albeit with a lower potency. Genistein did not affect the activation and inactivation kinetics of Kv4.3. Genistein-induced inhibition of Kv4.3 was voltage dependent with a steep increase over the channel opening voltage range. In the full-activation voltage range positive to +20 mV, no voltage-dependent inhibition was found. Genistein had no significant effect on steady-state activation, but shifted the voltage dependence of the steady-state inactivation of Kv4.3 in the hyperpolarizing direction in a concentration-dependent manner. The K(i) for the interaction between genistein and the inactivated state of Kv4.3, which was estimated from the concentration-dependent shift in the steady-state inactivation curve, was 1.17 μM. Under control conditions, closed-state inactivation was fitted to a single exponential function, and genistein accelerated closed-state inactivation. Genistein induced a weak use-dependent inhibition. These results suggest that genistein directly inhibits Kv4.3 by interacting with the closed-inactivated state of Kv4.3 channels. This effect is not mediated via inhibition of the PTK activity, because other types of PTK inhibitors could not prevent the inhibitory action of genistein.  相似文献   

15.
In vascular smooth muscles, angiotensin II (AII) has been reported to activate phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K). We investigated the time-dependent effects of AII on both phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and inositol phosphates (InsPs) accumulation in permeabilized microsomes from rat portal vein smooth muscle in comparison with those of noradrenaline (NA). AII stimulated an early production of PtdInsP3 (within 30 s) followed by a delayed production of InsPs (within 3-5 min), in contrast to NA which activated only a fast production of InsPs. The use of pharmacological inhibitors and antibodies raised against the PI3K and PLC isoforms expressed in portal vein smooth muscle showed that AII specifically activated PI3Kgamma and that this isoform was involved in the AII-induced stimulation of InsPs accumulation. NA-induced InsPs accumulation depended on PLCbeta1 activation whereas AII-induced InsPs accumulation depended on PLCgamma1 activation. AII-induced PLCgamma1 activation required both tyrosine kinase and PI3Kgamma since genistein and tyrphostin B48 (inhibitors of tyrosine kinase), LY294002 and wortmannin (inhibitors of PI3K) and anti-PI3Kgamma antibody abolished AII-induced stimulation of InsPs accumulation. Increased tyrosine phosphorylation of PLCgamma1 was only detected for long-lasting applications of AII and was suppressed by genistein. These data indicate that activation of both PI3Kgamma and tyrosine kinase is a prerequisite for AII-induced stimulation of PLCgamma1 in vascular smooth muscle and suggest that the sequential activation of the three enzymes may be responsible for the slow and long-lasting contraction induced by AII.  相似文献   

16.
Exposure to chronic hypoxia (CH) causes pulmonary hypertension. The vasoconstrictor endothelin-1 (ET-1) is thought to play a role in the development of hypoxic pulmonary hypertension. In pulmonary arterial smooth muscle cells (PASMCs) from chronically hypoxic rats, ET-1 signaling is altered, with the ET-1-induced change in intracellular calcium concentration (Δ[Ca(2+)](i)) occurring through activation of voltage-dependent Ca(2+) channels (VDCC) even though ET-1-induced depolarization via inhibition of K(+) channels is lost. The mechanism underlying this response is unclear. We hypothesized that activation of VDCCs by ET-1 following CH might be mediated by protein kinase C (PKC) and/or Rho kinase, both of which have been shown to phosphorylate and activate VDCCs. To test this hypothesis, we examined the effects of PKC and Rho kinase inhibitors on the ET-1-induced Δ[Ca(2+)](i) in PASMCs from rats exposed to CH (10% O(2), 3 wk) using the Ca(2+)-sensitive dye fura 2-AM and fluorescent microscopy techniques. We found that staurosporine and GF109203X, inhibitors of PKC, and Y-27632 and HA 1077, Rho kinase inhibitors, reduced the ET-1-induced Δ[Ca(2+)](i) by >70%. Inhibition of tyrosine kinases (TKs) with genistein or tyrphostin A23, or combined inhibition of PKC, TKs, and Rho kinase, reduced the Δ[Ca(2+)](i) to a similar extent as inhibition of either PKC or Rho kinase alone. The ability of PKC or Rho kinase to activate VDCCs in our cells was verified using phorbol 12-myristate 13-acetate and GTP-γ-S. These results suggest that following CH, the ET-1-induced Δ[Ca(2+)](i) in PASMCs occurs via Ca(2+) influx through VDCCs mediated primarily by PKC, TKs, and Rho kinase.  相似文献   

17.
Tyrosine kinase inhibitors: a new approach for asthma   总被引:7,自引:0,他引:7  
  相似文献   

18.
Blood vessels are surrounded by variable amounts of adipose tissue. We showed earlier that adventitial adipose tissue inhibits rat aortic contraction by release of a transferable factor, adventitium-derived relaxing factor (ADRF), which activates smooth muscle K(+) channels. However, little is known about the mechanisms of ADRF release. Using isolated rat aortic rings and isometric contraction measurements, we show that ADRF release depends on extracellular [Ca(2+)] (EC(50) approximately 4.7 mM). ADRF effects do not involve neuronal presynaptic N-type Ca(2+) and Na(+) channels or vanilloid, cannabinoid, and CGRP receptors. ADRF release is strongly inhibited by the protein tyrosine kinase inhibitors genistein and tyrphostin A25. In contrast, daidzein, an inactive genistein analog, and the protein tyrosine kinase inhibitor ST638 had no effect. Protein kinase A inhibition by H89 also inhibited ADRF release, whereas the protein kinase G inhibitor KT-5823 had no effect. We propose that ADRF release is Ca(2+) dependent and is regulated by intracellular signaling pathways involving tyrosine kinase and protein kinase A. Furthermore, ADRF release does not depend on perivascular nerve endings.  相似文献   

19.
The present study investigated the role of protein tyrosine phosphorylation in myogenic responsiveness of rat skeletal muscle arterioles. Arteriolar segments were cannulated and pressurized without intraluminal flow. All vessels studied developed spontaneous tone and demonstrated significant myogenic constriction to step changes in pressure with a resultant increase in myogenic tone over an intraluminal pressure range of 50-150 mmHg. Step increases in intraluminal pressure from 50 to 120 mmHg caused a rapid and sustained elevation in intracellular [Ca(2+)], as measured using fura 2. Vessels with myogenic tone dilated in response to tyrosine kinase inhibitors genistein (10 or 30 microM) and tyrphostin A47 (10 or 30 microM) and constricted to the tyrosine phosphatase inhibitor pervanadate (1 or 10 microM). Despite the dilator effect, myogenic reactivity was not blocked by the inhibitors. Daidzein (10 microM), a compound structurally similar to genistein but without tyrosine kinase-inhibiting activity, did not alter vessel tone or myogenic responses. Preincubation of arterioles with genistein or tyrphostin A47 did not significantly alter baseline arteriolar [Ca(2+)], and neither drug reduced the increase in [Ca(2+)] following an acute increase in intraluminal pressure. Constriction induced by pervanadate (10 microM) was not accompanied by a significant increase in intracellular [Ca(2+)], even though removal of extracellular Ca(2+) reversed the constriction. Examination of smooth muscle tyrosine phosphorylation, using a fluorescent phosphotyrosine antibody and confocal microscopy, showed that increased intraluminal pressure resulted in an increase in anti-phosphotyrosine fluorescence. Because manipulation of tyrosine kinase activity was found to alter vessel diameter, these data support a role for tyrosine phosphorylation in modulation of arteriolar tone. However, the results indicate that acute arteriolar myogenic constriction does not require tyrosine phosphorylation.  相似文献   

20.
The signal transduction pathway linking physiological concentrations of [Arg(8)]vasopressin (AVP) to an increase in frequency of Ca(2+) spiking was examined in confluent cultures of A7r5 vascular smooth muscle cells. Immunoprecipitation/Western blot studies revealed a robust increase in tyrosine phosphorylation of the non-receptor tyrosine kinase, PYK2, in A7r5 cells treated with 4beta-phorbol 12-myristate 13-acetate or ionomycin. 100 pm AVP also induced PYK2 tyrosine phosphorylation, and this effect was inhibited by protein kinase C inhibitors Ro-31-8220 (1-10 microm) or chelerythrine chloride (1-20 microm). In fura-2-loaded A7r5 cells, the stimulation of Ca(2+) spiking by 100 pm AVP or 1 nm 4beta-phorbol 12-myristate 13-acetate was completely blocked by PP2 (10 microm, a Src family kinase inhibitor). Salicylate (20 mm, recently identified as a PYK2 inhibitor) and the tyrosine kinase inhibitor, tyrphostin A47 (50 microm), but not its inactive analog, tyrphostin A63, also blocked AVP-stimulated Ca(2+) spiking. PYK2 phosphorylation was inhibited by both PP2 and salicylate, whereas tyrphostin A47 failed to inhibit PYK2 tyrosine phosphorylation. ERK1/2 kinases did not appear to be involved because 1) 100 pm AVP did not appreciably increase ERK1/2 phosphorylation and U-0126 (2.5 microm) did not inhibit AVP-stimulated Ca(2+) spiking; and 2) epidermal growth factor (10 nm) robustly stimulated ERK1/2 phosphorylation but did not induce Ca(2+) spiking. Delayed rectifier K(+) channels may mediate the PYK2 activity because Kv1.2 channel protein co-immunoprecipitated with PYK2 and tyrosine phosphorylation of Kv1.2 was stimulated by AVP and inhibited by Ro-31-8220, PP2, and salicylate but not tyrphostin A47. Our findings are consistent with a role for PYK2 and phosphorylation of K(+) channels in the stimulation of Ca(2+) spiking by physiological concentrations of AVP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号