首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Strong tidal currents flowing over mobile sediment give rise to migrating bedforms termed megaripples and sandwaves. For colonizing epifauna a megaripple field is a habitat subject to repeated disturbance as advancing megaripples bury all epifauna in their path. Eight epifaunal species occur in a megaripple field in tipper Spencer Gulf, South Australia. The stalked bryozoan Lanceopora obliqua is an r-strategist and occurs patchily in high densities. An ascidian Polycarpa pedunculata, probably a K-strategist, and a group of four species of articulated bryozoans, have much lower population densities which are predictable according to the frequency of disturbance. Other species occur in low, but variable densities. Some species show adaptations in morphology, behaviour or life history patterns which favour survival in this unusual environment.  相似文献   

2.
The responses of soft sediment infauna were investigated in an intertidal sandflat to determine patterns of recolonization and succession at the community and population level. Experimental disturbance plots, 1 m2, were initiated in August and sampled for 4.5 months along with ambient sediments. Sediment grain-size was used as a general indicator of the physical state of the disturbance patches, and grain-size distributions among disturbance and ambient patches became similar after ∼2.5 months. Recolonization varied among the dominant infaunal taxa. Densities of infauna that were most abundant in the habitat, primarily syllid polychaetes, did not recover to ambient levels until 3-4 months after disturbance, when ambient densities were falling to winter lows. Multivariate analysis indicated that community recovery occurred by the end of the study period after 4.5 months. Although community structure recovered by the end of the study, the population structure of the dominant species Parapionosyllis longicirrata remained significantly different among ambient and disturbed patches. On all sampling dates except one, disturbance patches had a higher number of larger individuals than ambient sediments. Previous studies have shown that bedload transport of juveniles and adults, and other processes, can cause recolonization to be relatively rapid on intertidal sandflats. However, our results indicate that recovery times may be on the order of months at large disturbance sizes. Therefore, rapid responses may occur primarily in the case of small-scale (<1 m2) disturbance patches. Secondly, recovery at the community level does not necessarily mean that population-level characteristics of species comprising the community have recovered. Population-level differences may be longer lasting than indicated by community level indicators of recovery.  相似文献   

3.
Question: Are trees sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Does sensitivity of forest communities to climatic variability depend on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East Tennessee, USA. Methods: Using a long‐term dataset (1967–2006), we analyzed temporal forest dynamics at the tree and species level, and community dynamics for forest stands that differed in initial species composition (i.e., chestnut oak, oak–hickory, pine, and yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the four‐decade study period, forest communities underwent successional change and substantially increased in biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand‐level responses to climatic variability were related to the responses of component species, except in pine stands. Pinus echinata, the dominant species in pine stands, decreased over time due to periodic outbreaks of pine bark beetle (Dendroctonus frontalis). These outbreaks at Walker Branch could not be directly related to climatic conditions. Conclusions: The results indicate that sensitivity of developing forests to climatic variability is stand type‐dependent, and hence is a function of species composition. However, in the long term, direct effects of climatic variability on forest dynamics may be small relative to autogenic successional processes or climate‐related insect outbreaks. Empirical studies testing for interactions between forest succession and climatic variability are needed.  相似文献   

4.
Bird community characteristics of three sites with different levels of disturbance were studied using transect surveys during the dry season in a subtropical humid forest in Bolivia. One area had been unintentionally burned 4 years prior and selectively harvested (DIS) 1 year prior to sampling. A second area had been selectively harvested 1 year prior to sampling and had no recent history of fire (HAR). Species richness, as assessed by species–time curves and rarefaction, was higher in both altered areas than in undisturbed forest (INT). In general, frugivores and omnivores were more abundant in both altered areas compared to intact forest. Canopy frugivores, understory omnivores and multiple-strata omnivores were most abundant in HAR. Canopy frugivores, near-ground insectivores, understory and multiple-strata omnivores were least abundant in INT, although INT had the highest abundances of canopy insectivores and near-ground omnivores. Richness and abundance of widespread species with low habitat specificity was higher in both areas that experienced disturbance compared to intact forest. Differences in bird community structure between disturbed and intact forest at this site are attributed primarily to the addition of widespread species with less narrow habitat requirements, and possibly to changes in the distribution of different food types.  相似文献   

5.
1. Maternal effects describe how mothers influence offspring life histories. In many taxa, maternal effects arise by differential resource allocation to young, often identified by variation in propagule size, and which affects individual traits and population dynamics. 2. Using a laboratory model system, the soil mite Sancassania berlesei, we show that, controlling for egg size, older mothers lay eggs that hatch later, develop more slowly, and mature at larger body sizes. 3. Such differences in life histories lead to marked population dynamical effects lasting for multiple generations, as evidenced by an experiment initiated with similarly sized eggs that came from young or old mothers. Differences in maturation from the initial cohort led to differences in population structure and life history that propagated the initial differences over time. 4. Maternal-age effects, which are not related to gross provisioning of the egg and are therefore phenotypically cryptic, can have profound implications for population dynamics, especially if environmental variation can affect the age structure of the adult population.  相似文献   

6.
Settling panels were used to determine the distribution of sessile organisms. Experimental and control cages were located at two study sites that were of different physical exposures. Twenty-nine species of sessile organisms were recorded for the two sites. Data on the presence or absence of each species, for each sample, were classified. The resulting hierarchy showed natural physical disturbance to be the major structuring factor in the community. Predation was of less importance in the physically stressed study site and had no effect on species distribution in the protected site.  相似文献   

7.
Species distributional limits may coincide with hard dispersal barriers or physiological thresholds along environmental gradients, but they may also be influenced by species interactions. We explore a number of models of interspecific interactions that lead to (sometimes abrupt) distribution limits in the presence and absence of environmental gradients. We find that gradients in competitive ability can lead to spatial segregation of competitors into distinct ranges, but that spatial movement tends to broaden the region of sympatry between the two species, and that Allee effects tend to sharpen these boundaries. We generalize these simple models to include metapopulation dynamics and other types of interactions including predator–prey and host–parasite interactions. We derive conditions for range limits in each case. We also consider models that include coevolution and gene flow and find that character displacement along environmental gradients can lead to stable parapatric distributions. We conclude that it is essential to consider coevolved species interactions as a potential mechanism limiting species distributions, particularly when barriers to dispersal are weak and environmental gradients are gradual.  相似文献   

8.
There is a general consensus that functional traits are reliable indicators of adaptation of organisms to particular environmental characteristics. In this study we relate the combined distributions of species traits of plants and animals to disturbance regimes in chestnut forests of southern Switzerland affected by regular winter fires. We used co‐inertia analysis for combining the trait response of 471 invertebrate species (117 001 individuals) and 81 plant species at 23 sites with different fire and cutting histories. Trait response was assessed by calculating the variation in weighted mean traits averaged over the communities and by using mean traits in multivariate analyses. The analysis showed a strong association between plant and animal traits under fire constraints (Monte‐Carlo test, p=0.0045). Plants and animal distributions show parallel trends in responses to fire which selects traits relating to persistence (ability to survive), resilience (ability to recover) and mobility. Warmth‐demanding insects, herbivores, flying carnivores and pollinators were associated with recent fires, as were annual, ruderal and light‐demanding plant species with long flowering duration. Small arthropods feeding on dead wood and those with narrow habitat requirements were associated with low fire frequency and unburnt sites, as were competitive plants with large seeds favoring moist sites. The spatial association between plant and animal traits reflected adaptations that promote survival in the disturbance regime, while the disturbance acts as an environmental filter on the distribution and assemblage of the trait values within communities. This combined analysis of plant and invertebrate traits distributions illustrates how community and ecosystem responses can be monitored and the results generalized across localities and disturbance types. Analyses of traits that cross trophic levels provide powerful and promising tools for validating management procedures and controlling ecosystem functions.  相似文献   

9.
We tested the hypothesis that diversity and productivity of herbaceous plant communities in disturbed soil are related to the physical and biological heterogeneity of the landscape Our study was earned out on vegetation responses in porcupine diggings on a rocky slope in the central Negev desert in Israel We measured aboveground bio-mass and plant density per species in 150 porcupine diggings (15 cm deep and 15 to 20 cm wide) and in equally sized adjacent control samples in the undisturbed soil matrix We calculated mean annual biomass production, plant density and species richness for 10 sample areas along the slope In addition, we divided the plants into groups according to propagule size and dispersal mode We denoted two types of landscape heterogeneity, which we called physical and biological patchiness Physical patchiness was measured as the ratio of bare rock to soil surface Biological patchiness was the area of the soil covered by shrubs with associated soil mound and under-story relative to the total soil surface We also measured disturbance density, as the long term (17 yr) average density of newly made porcupine diggings We found that 1) the physical patchiness explained 30% of the variation of biological patchiness along the slope, while 2) the patterns of disturbance intensity and biological patchiness were similar (R-=0 386) 3) Biomass, density and species richness were significantly higher in diggings than m the soil matrix 4) Plant density in the matrix, but not m the diggings, was significantly correlated with physical patchiness, 5) species richness in diggings was significantly correlated with biological patchiness, but 6) biomass production in diggings and matrix was not affected by either physical or biological patchiness of the landscape 7) Disturbance density did not affect vegetation responses in diggings and matrix 8) A shift in the plant communities in the matrix towards plants with smaller seeds was associated with increasing physical patchiness, while m diggings there was an opposite shift 9) The proportion of wind dispersers was higher in diggings than outside, while the proportion of runoff dispersers was lower, 10) the densities of runoff dispersers in diggings and matrix were positively correlated with physical and biological patchiness 11) Physical and biological patchiness formed the two major gradients of species composition, explaining 30 and 25% respectively We conclude that the network of physical and biological patchiness and soil disturbance are important in the redistribution of resources and seeds, which control plant biomass, density, species richness and diversity The bare rock surface is the main source for runoff flow with associated soil, organic matter and nutrients The understory vegetation of shrubs provides seeds for creating and maintaining diversity The soil matrix absorbs runoff flow, and disturbances absorb runoff and trap seeds Thus, differences in landscape heterogeneity and their effects on resource and seed movement interact in controlling plant community productivity and diversity in the landscape  相似文献   

10.
11.
12.
Recent studies have used transition matrix elasticity analysis to investigate the relative role of survival (L), growth (G) and fecundity (F) in determining the estimated rate of population increase for perennial plants. The relative importance of these three variables has then been used as a framework for comparing patterns of plant life history in a triangular parameter space. Here we analyse the ways in which the number of life-cycle stages chosen to describe a species (transition matrix dimensionality) might influence the interpretation of such comparisons. Because transition matrix elements describing survival (stasis) and growth are not independent, the number of stages used to describe a species influences their relative contribution to the population growth rate. Reduction in the number of stages increases the apparent importance of stasis relative to growth, since each becomes broader and fewer individuals make the transition to the next stage per unit time period. Analysis of a test matrix for a hypothetical tree species divided into 4–32 life-cycle stages confirms this. If the number of stages were defined in relation to species longevity so that mean residence time in each stage were approximately constant, then the elasticity of G would reflect the importance of relative growth rate to . An alternative, and simpler, approach to ensure comparability of results between species may be to use the same number of stages regardless of species longevity. Published studies for both herbaceous and woody species have tended to use relatively few stages to describe life cycles (herbs: n=45, ; woody plants: n=21, ) and so approximate this approach. By using the same number of stages regardless of longevities, the position of species along the G-L side of the triangular parameter space largely reflects differences in longevity. The extent of variation in elasticity for L, G and F within and between species may also be related to factors such as successional status and habitat. For example, the shade-tolerant woody species, Araucaria cunninghamii, shows greater importance for stasis (L), while the gap-phase congener species, Araucaria hunsteinii, shows higher values for G (although values are likely to vary with the stage of stand development).  相似文献   

13.
1. The structure of bryophyte communities in streams in relation to habitat characteristics, especially disturbance, is described. Disturbance in rivers is quantified as movement of the stream bed, whereas in small streams water level fluctuation is used as an indicator of disturbance frequency. 2. Canonical correspondence analysis differentiated frequently disturbed sites from more stable ones. The existence of a disturbance gradient was confirmed in a subset of the study sites using long-term records of discharge variation. A parallel change was detected in the species composition of bryophyte communities with low-statured, potentially fast colonizers dominating the disturbed end and large perennial species the stable end of the gradient. 3. A consistent pattern of zonation of bryophyte species was found along the gradient from continually submersed to persistently dry conditions in small streams and lake outlets. An abrupt increase in species richness occurred at or just above the water line, where facultatively aquatic species tolerant of both conditions formed the bulk of the community. 4. The relationship between species richness and standing crop in stream bryophyte communities was consistent with the hump-backed model of Grime (1979), especially at the within-habitat scale. Quadrats of low and very high standing crop were characterized by low species richness, while peak richness was observed at intermediate standing crops. 5. A few perennial species (e.g. Fontinalis spp. and Rhynchostegium riparioides) capable of monopolizing space dominated the most stable habitats. Species composition in low biomass sites was more variable, yet only one basic growth-form (small-statured species with high allocation to spore production) seemed possible in these highly disturbed streams. In habitats of intermediate biomass, small-scale disturbances apparently allow the formation of a more varied bryophyte community. 6. A habitat templet for stream bryophyte life strategies and community structure is presented. Disturbance is proposed to be the factor filtering out traits unsuitable for a given environment. The potential of stream bryophytes for testing and developing general ecological theory is emphasized.  相似文献   

14.
There is considerable interest in understanding how ectothermic animals may physiologically and behaviourally buffer the effects of climate warming. Much less consideration is being given to how organisms might adapt to non-climatic heat sources in ways that could confound predictions for responses of species and communities to climate warming. Although adaptation to non-climatic heat sources (solar and geothermal) seems likely in some marine species, climate warming predictions for marine ectotherms are largely based on adaptation to climatically relevant heat sources (air or surface sea water temperature). Here, we show that non-climatic solar heating underlies thermal resistance adaptation in a rocky–eulittoral-fringe snail. Comparisons of the maximum temperatures of the air, the snail''s body and the rock substratum with solar irradiance and physiological performance show that the highest body temperature is primarily controlled by solar heating and re-radiation, and that the snail''s upper lethal temperature exceeds the highest climatically relevant regional air temperature by approximately 22°C. Non-climatic thermal adaptation probably features widely among marine and terrestrial ectotherms and because it could enable species to tolerate climatic rises in air temperature, it deserves more consideration in general and for inclusion into climate warming models.  相似文献   

15.
Empirical studies have suggested that species richness of grassland insects usually decreases under grazing management. By contrast, grazing has been shown to increase the species density and richness of vascular plants, especially on productive soils. In order to test the suggested differences in response to management between plants and insects, we simultaneously studied species richness of vascular plants and their insect herbivores, butterflies and moths, in 68 semi-natural grasslands with varying grazing intensity and frequency in SW Finland. Species richness of plants and insects was for the first time related to a quantitative measure of disturbance intensity and successional age, mean vegetation height, by using generalized additive models (GAM). The effects of soil nutrients on vegetation height were accounted for by using phosphorus concentration as a productivity surrogate.
The results showed that species richness of butterflies and moths peaked in taller vegetation compared with vascular plants, corresponding to a lower disturbance intensity and increasing time since abandonment. These patterns are discussed in the light of two hypotheses, the "structural diversity hypothesis" and "dynamic equilibrium model" of Huston, both suggesting a weaker disturbance tolerance of insects compared with plants. Butterflies and moths which are specialists in their larval host-plant use (monophagous and oligophagous species) preferred lower vegetation (higher disturbances) compared with generalists (polyphagous species), as predicted by Huston's model. This difference indicates a stronger relationship with plant species richness for specialist than for generalist butterflies and moths. Our results support the application of regionally and temporally varying grazing intensities in grassland conservation management.  相似文献   

16.
17.
Behaviour may contribute to changes in fitness prospects with age, for example through effects of age-dependent social dominance on resource access. Older individuals often have higher dominance rank, which may reflect a longer lifespan of dominants and/or an increase in social dominance with age. In the latter case, increasing dominance could mitigate physiological senescence. We studied the social careers of free-living jackdaws over a 12 year period, and found that: (i) larger males attained higher ranks, (ii) social rank increased with age within individuals, and (iii) high-ranked individuals had shorter lifespan suggesting that maintaining or achieving high rank and associated benefits comes at a cost. Lastly, (iv) social rank declined substantially in the last year an individual was observed in the colony, and through its effect on resource access this may accelerate senescence. We suggest that behaviour affecting the ability to secure resources is integral to the senescence process via resource effects on somatic state, where behaviour may include not only social dominance, but also learning, memory, perception and (sexual) signalling. Studying behavioural effects on senescence via somatic state may be most effective in the wild, where there is competition for resources, which is usually avoided in laboratory conditions.  相似文献   

18.
19.
Understanding how biodiversity responds to environmental changes is essential to provide the evidence-base that underpins conservation initiatives. The present study provides a standardized comparison between unbaited flight intercept traps (FIT) and baited pitfall traps (BPT) for sampling dung beetles. We examine the effectiveness of the two to assess fire disturbance effects and how trap performance is affected by seasonality. The study was carried out in a transitional forest between Cerrado (Brazilian Savanna) and Amazon Forest. Dung beetles were collected during one wet and one dry sampling season. The two methods sampled different portions of the local beetle assemblage. Both FIT and BPT were sensitive to fire disturbance during the wet season, but only BPT detected community differences during the dry season. Both traps showed similar correlation with environmental factors. Our results indicate that seasonality had a stronger effect than trap type, with BPT more effective and robust under low population numbers, and FIT more sensitive to fine scale heterogeneity patterns. This study shows the strengths and weaknesses of two commonly used methodologies for sampling dung beetles in tropical forests, as well as highlighting the importance of seasonality in shaping the results obtained by both sampling strategies.  相似文献   

20.
Tradeoffs – negative reciprocal causal relationships in net benefits between trait magnitudes – have not always been studied in depth appropriate to their central role in life‐history analysis. Here we focus on allocation tradeoffs, in which acquisition of a limiting resource requires allocation of resource to alternative traits. We identify the components of this allocation process and emphasize the importance of quantifying them. We then propose categorizing allocation tradeoffs into linear, concave and convex relationships based on the way that resource allocation yields trait magnitudes under the tradeoff. Linear relationships are over‐represented in the literature because of typically small data sets over restricted ranges of trait magnitudes, an emphasis on simple correlation analysis, and a failure to remove variation associated with acquisition of the limiting resource in characterizing the tradeoff. (We provide methods for controlling these acquisition effects.) Non‐linear relationships have been documented and are expected under plausible conditions that we summarize. We note ways that shifting environments and biological features yield plasticity of tradeoff graphs. Finally, we illustrate these points using case studies and close with priorities for future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号