首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
BACKGROUND: Lasofoxifene is a nonsteroidal selective estrogen receptor modulator (SERM). With high affinity to the alpha and beta human estrogen receptors and greater potency than other SERMs, lasofoxifene is potentially a superior treatment for postmenopausal osteoporosis. In light of the known effects of estrogen-modulating compounds on female reproductive indices, two studies were conducted to evaluate the effects of lasofoxifene on female rat cyclicity, reproduction, and parturition. METHODS: One study evaluated effects of lasofoxifene on estrous cyclicity, and the second study assessed effects on implantation and parturition. In the cyclicity study, lasofoxifene was administered to female rats at doses of 0.1, 0.3, and 1.0 mg/kg/day for 14 consecutive days. After treatment, there was a 3-week reversibility phase followed by a mating phase. In the implantation study, lasofoxifene was administered to pregnant female rats at doses of 0.01, 0.03, and 0.1 mg/kg/day for 7 consecutive days (gestation day [GD] 0-6). Some animals were euthanized on GD 21, and the remainder of the group was allowed to deliver the F1 generation. Several developmental indices were evaluated in the F1 pups through post-natal day (PND) 21. RESULTS: In the cyclicity study, all lasofoxifene-treated females were anestrous by Study Day 7 (1.0 mg/kg) or 9 (0.3 and 0.1 mg/kg). The reversibility phase resulted in restoration of normal estrous cycles by the end of 1 (0.1 mg/kg) or 2 weeks (0.3 and 1.0 mg/kg). During the mating phase, no adverse effects occurred in pregnancy success or reproductive parameters. In the implantation study, all doses of lasofoxifene increased pre- and post-implantation losses, increased gestation length, and reduced litter size. None of the developmental parameters measured on the F1 generation was adversely affected. CONCLUSION: Lasofoxifene reversibly altered the estrous cycle and inhibited implantation, consistent with what would be expected from a member of the SERM class.  相似文献   

2.
BACKGROUND: Lasofoxifene is a nonsteroidal selective estrogen receptor modulator (SERM) with greater than 100-fold selectivity against all other steroid receptors and is a potentially superior treatment for postmenopausal osteoporosis. The purpose of this study was to evaluate the effects of lasofoxifene on male reproduction in rats in light of the known effects of estrogen modulating compounds on male reproductive ability. METHODS: Lasofoxifene was administered to adult male rats at doses of 0.1, 1, 10, and 100 mg/kg for 66-70 consecutive days. After 28 days of dosing, male rats were cohabited with untreated female rats. Female rats were euthanized on gestation day 14 and a uterine examination was carried out for evaluation of reproductive parameters and embryo viability. Male rats were euthanized after 66-70 days of dosing and epididymal sperm motility and concentration were assayed. The testes, epididymides, prostate, and seminal vesicles were weighed and microscopically examined. RESULTS: The duration of cohabitation was increased for 100 mg/kg males by 0.7 days. The number of males copulating and the number of implantation sites produced per copulation were reduced in the 10 and 100 mg/kg groups. Weights of the seminal vesicles and epididymides were reduced for all groups, although the testes weight and epididymal sperm motility and concentration were not affected by treatment. There were no microscopic findings in the male reproductive tissues. CONCLUSION: The changes in male fertility and reproductive tissue weights after exposure to lasofoxifene are consistent with those previously described for estrogen receptor-modulating compounds.  相似文献   

3.
4.
BACKGROUND: Lasofoxifene is a nonsteroidal selective estrogen receptor modulator (SERM) developed for the treatment of postmenopausal osteoporosis. The purpose of these studies was to evaluate the effects of lasofoxifene on the postnatal development, behavior, and reproductive performance of offspring of female rats given lasofoxifene during organogenesis and lactation. METHODS: Two range-finding studies were conducted to determine the effects of lasofoxifene at doses from 0.01-10 mg/kg on parturition and lactation in pregnant rats and on the early postnatal development of the offspring, and to optimize the dosing regimen. Maternal milk and plasma were sampled for concentrations of lasofoxifene on Lactation Days 4, 7, and 14. In the pre- and postnatal development study, lasofoxifene was administered to pregnant and lactating rats by oral gavage at dose levels of 0.01, 0.03, and 0.1 mg/kg on Gestation Days 6-17 and Lactation Days 1-20. Maternal body weight and food consumption were measured throughout pregnancy, and body weight was measured throughout lactation. Parturition was monitored closely. The F1 offspring were measured for viability, body weight, anogenital distance, the appearance of postnatal developmental indices and reflex behaviors, sensory function, in an age-appropriate functional observational battery, motor activity, auditory startle, passive avoidance, and the Cincinnati Water Maze. The F1 generation was assessed for reproductive function, and the F2 offspring were measured for body weight and viability throughout the lactation period. RESULTS: In the range-finding studies, indications of maternal toxicity included decreased body weight and food consumption, increased length of gestation, prolonged parturition, dystocia, and increased offspring mortality at birth. Concentrations of lasofoxifene in maternal plasma were similar to those in milk, increased with increasing dose, and remained consistent over a 10-day period. In the pre- and postnatal development study, maternal body weights and food consumption were decreased in all treated groups during gestation. Length of gestation was increased, parturition was prolonged, and dystocia was noted in the dams in the 0.1 mg/kg group. There was increased pup mortality in the F1 litters in the 0.1 mg/kg group and all treated groups had decreased offspring body weights beginning at 1 week of age, continuing into the postweaning period and, for the F1 males, into adulthood. Female F1 offspring in the 0.03 and 0.1 mg/kg groups had increased body weights as adults. There were delays in the age of appearance of preputial separation in the males in the 0.1 mg/kg group and vaginal opening in the females in all treated groups. Body temperature was decreased by <0.5 degrees C after weaning for male and female offspring in the 0.1 mg/kg group. The sensory, behavioral, and functional measures, including the tests of learning and memory, were unaffected by treatment. Mating success was lower for the F1 animals in the 0.1 mg/kg group, but there were no effects on the reproductive parameters. Mating, reproduction, and maternal behavior of the F1 animals in the 0.01 and 0.03 mg/kg groups and the survival and body weights of the F2 offspring in all treated groups through Postnatal Day 21 were unaffected by treatment. CONCLUSION: The maternal findings in this study were related to the pharmacologic activity of lasofoxifene. Inhibition of growth of the F1 offspring after perinatal exposure to lasofoxifene was observed, but there were no significant effects on the sensory, behavioral, or functional measures, including learning and memory. There were no effects on the F2 generation. The findings are consistent with those reported for at least one other SERM. The findings of this study do not suggest increased risk for the primary indication of use in postmenopausal women.  相似文献   

5.
The third extracellular loop of the human delta-opioid receptor (hDOR) is known to play an important role in the binding of delta-selective ligands. In particular, mutation of three amino acids (Trp(284), Val(296), and Val(297)) to alanine significantly diminished delta-opioid receptor affinity for delta-selective ligands. To assess the changes in conformation accompanying binding of the endogenous opioid peptide deltorphin II to the delta-opioid receptor at both the receptor and ligand levels as well as to determine points of contact between the two, an in-depth spectroscopic study that addressed these points was initiated. Fragments of the delta-opioid receptor of variable length and containing residues in the third extracellular loop were synthesized and studied by NMR and CD spectroscopy in a membrane-mimetic milieu. The receptor peptides examined included hDOR-(279-299), hDOR-(283-299), hDOR-(281-297), and hDOR-(283-297). A helical conformation was observed for the longest receptor fragment between Val(283) and Arg(291), whereas a nascent helix occurred in a similar region for hDOR-(281-297). Further removal of N-terminal residues Val(281) and Ile(282) abolished helical conformation completely. Binding of the delta-selective ligand deltorphin II to hDOR-(279-299) destabilized the helix at the receptor peptide N terminus. Dramatic changes in the alpha-proton chemical shifts for Trp(284) and Leu(286) in hDOR-(279-299) also accompanied this loss of helical conformation. Large upfield displacement of alpha-proton chemical shifts was observed for Leu(295), Val(296), and Val(297) in hDOR-(279-299) following its interaction with deltorphin II, thus identifying a gain in beta-conformation at the receptor peptide C terminus. Similar changes did not occur for the shorter peptide hDOR(281-297). A hypothesis describing the conformational events accompanying selective deltorphin II binding to the delta-opioid receptor is presented.  相似文献   

6.
A detailed analysis of the differential effects of estrogen (E) compared to raloxifene (Ral), a selective estrogen receptor modulator (SERM), following estrogen receptor (ER) binding in gynecological tissues was conducted using gene microarrays, Northern blot analysis, and matrix metalloproteinase (MMP) 2 activity studies. We profiled gene expression in the uterus following acute (1 day) and prolonged daily (5 wk) treatment of E and Ral in ovariectomized rats. Estrogen regulated twice as many genes as Ral, largely those associated with catalysis and metabolism, whereas Ral induced genes associated with cell death and negative cell regulation. Follow-up studies confirmed that genes associated with matrix integrity were differentially regulated by Ral and E at various time points in uterine and vaginal tissues. Additional experiments were conducted to determine the levels of MMP2 activity in uterus explants from ovariectomized rats following 2 wk of treatment with E, Ral, or one of two additional SERMs: lasofoxifene, and levormeloxifene. Both E and lasofoxifene stimulated uterine MMP2 activity to a level twofold that of Ral, whereas levormeloxifene elevated MMP2 activity to a level 12-fold that of Ral. These data show that one of the significant differences between E and Ral signaling in the uterus is the regulation of genes and proteins associated with matrix integrity. This may be a potential key difference between the action of SERMs in the uterus of postmenopausal women.  相似文献   

7.
BACKGROUND: The purpose of this study was to evaluate the effects of lasofoxifene, a selective estrogen receptor modulator (SERM), on rat and rabbit fetal development. METHODS: Lasofoxifene was administered orally to rats (1, 10, 100 mg/kg) between gestation days (GD) 6-17, and in rabbits (0.1, 1, 3 mg/kg) between GD 6-18. Maternal body weight and food consumption were monitored throughout pregnancy. Fetuses were delivered by Cesarean section on GD 21 in rats, and GD 28 in rabbits, to evaluate fetal viability, weight, and morphology. Drug concentrations in maternal plasma were measured in a separate cohort of animals at several time points commencing on GD 17 (rats) and 18 (rabbits). On GD 18 (rat) and GD 19 (rabbit) drug concentrations were measured in maternal plasma and in fetal tissue 2 hr post dosing to determine the fetal to maternal drug ratio. RESULTS: In rats, there were dose-related declines in maternal weight gain and food consumption. Post implantation loss was significantly increased at dosages of 10 and 100 mg/kg, and the number of viable fetuses was decreased at 100 mg/kg. The placental weights increased, whereas fetal weights decreased in a dose-dependent manner. Lasofoxifene-related teratologic findings were noted at 10 and 100 mg/kg and included imperforate anus with hypoplastic tails, dilatation of the ureters and renal pelvis, misaligned sternebrae, hypoflexion of hindpaw, wavy ribs, and absent ossification of sternebrae. In rabbits, neither maternal weight gain nor food consumption were affected during treatment. Between GD 26-28, there was a dose-dependent increased incidence of red discharge beneath the cages. At 1 and 3 mg/kg, resorptions and post-implantation loss increased. There were no significant external or visceral effects, but 3 mg/kg there was an increased incidence of supernumerary ribs. Although the maternal plasma Cmax and AUC(0-24) were dose-dependent, the exposures in the rat were many orders of magnitude greater than in the rabbit even for the same 1 mg/kg dose. The single time point fetal/maternal drug ratio was higher in the rat (1.3-0.78) than in the rabbit (0.21-0.16). CONCLUSION: In general, both maternal and fetal effects of lasofoxifene were similar to those reported with other SERMs. Although the incidence or severity of these effects was, in some instances, greater in the rat than in the rabbit, the doses and the resultant maternal and fetal exposures were many orders of magnitude higher in the rat, suggesting the rabbit to be more sensitive to the toxicological effects of lasofoxifene.  相似文献   

8.
Ligand-selective interdomain conformations of estrogen receptor-alpha   总被引:1,自引:0,他引:1  
Selective estrogen receptor modulators (SERMs) inhibit estrogen activation of the estrogen receptor (ER) in some tissues but activate ER in other tissues. These tissue-selective actions suggest that SERMs may be identified with tissue specificities that would improve the safety of breast cancer and hormone replacement therapies. The identification of an improved SERM would be aided by understanding the effects of each SERM on the structure and interactions of ER. To date, the inability to obtain structures of the full-length ER has limited our structural characterization of SERM action to their antiestrogenic effects on the isolated ER ligand binding domain. We studied the effects of estradiol and the clinically useful SERMs 4-hydroxytamoxifen and fulvestrant on the conformation of the full-length ERalpha dimer complex by comparing, in living human breast cancer cells, the amounts of energy transfer between fluorophores attached to different domains of ERalpha. Estradiol, 4-hydroxytamoxifen, and fulvestrant all promoted the rapid formation of ERalpha dimers with equivalent interaction kinetics. The amino- and carboxyl-terminal ERalpha domains both contain activation functions differentially affected by these ligands, but the positions of only the carboxyl termini differed upon binding with estradiol, 4-hydroxytamoxifen, or fulvestrant. The association of a specific ERalpha dimer conformation with the binding of ligands of different clinical effect will assist the identification of a SERM with optimal tissue-selective estrogenic and antiestrogenic activities. These studies also provide a roadmap for dissecting important structural and kinetic details for any protein complex from the quantitative analysis of energy transfer.  相似文献   

9.
Bazedoxifene (BZA), a new selective estrogen receptor modulator (SERM) was recently approved in Europe for the prevention and treatment of postmenopausal osteoporosis. Combination therapy using BZA and conjugated estrogens (CE) is currently in late stage development representing a new paradigm for the treatment of menopausal symptoms and prevention of osteoporosis. A GeneChip microarray study was designed to compare gene expression profiles of BZA to that of other SERMs, raloxifene (RAL) and lasofoxifene (LAS). In addition, we compared the gene expression profiles of the three SERMs in combination with CE, a mixture of 10 most abundant estrogens present in Premarin. According to the hierarchical clustering heat map analysis, gene clusters that specifically responded to CE treatments or SERM treatments were identified and gene lists sorted based on a set of cutoff filters. A group of genes differentially regulated by CE were also identified to be antagonized by BZA when comparing CE with the BZA + CE treatment. All three SERMs showed significant antagonistic effect against CE-stimulated cell proliferation, based on the MCF-7 cell proliferation assay and GeneChip data, with the order of antagonist activity being BZA > RAL > LAS. These results indicate that SERMs in combination with CE exhibit differential pharmacology, and therefore, combinations of other SERMs and estrogen preparations may not yield the same effects that are observed in clinic by pairing BZA with CE.  相似文献   

10.
Neuroprotective effects of estradiol are well characterized in animal experimental models. However, in humans, the outcome of estrogen treatment for cognitive function and neurological diseases is very controversial. Selective estrogen receptor modulators (SERMs) may represent an alternative to estrogen for the treatment or the prevention of neurodegenerative disorders. SERMs interact with the estrogen receptors and have tissue-specific effects distinct from those of estradiol, acting as estrogen agonists in some tissues and as antagonists in others. In this study we have assessed the effect of tamoxifen, raloxifene, lasofoxifene (CP-336,156), bazedoxifene (TSE-424), and 17beta-estradiol on the hippocampus of adult ovariectomized rats, after the administration of the excitotoxin kainic acid. Administration of kainic acid induced the expression of vimentin in reactive astroglia and a significant neuronal loss in the hilus. SERMs did not affect vimentin immunoreactivity in the hilus, while 17beta-estradiol significantly reduced the surface density of vimentin immunoreactive profiles. Estradiol, tamoxifen (0.4-2 mg/kg), raloxifene (0.4-2 mg/kg), and bazedoxifene (2 mg/kg) prevented neuronal loss in the hilus after the administration of kainic acid. Lasofoxifene (0.4-2 mg/kg) was not neuroprotective. These findings indicate that SERMs present different dose-dependent neuroprotective effects. Furthermore, the mechanisms of neuroprotection by SERMs and estradiol are not identical, because SERMs do not significantly affect reactive gliosis while neuroprotection by estradiol is associated with a strong down-regulation of reactive astroglia.  相似文献   

11.
The conformation of orexin-A, an orphan G-protein coupled receptor agonist has been determined when bound to sodium dodecylsulphate-d(25) (SDS) micelles by (1)H and (13)C NMR and molecular modeling. Orexin-A has been implicated in sleep-wakefulness and feeding regulation. The conformational preference of orexin-A consists of a short helical section, involving Asp(5) to Gln(9) that makes up helix I, followed by a bend from Lys(10) to Ser(13). Residues Leu(16) to Gly(22) make up helix II. The conformation of orexin-A can now be used to explain the results of earlier Ala substitution mutagenesis experiments (J. G. Darker et al., Bioorg. Med. Chem. Lett. 11, 737-740 (2001); S. Ammoun, et al., J. Pharmacol. Expt. Ther. 305, 507-514 (2003)). Darker et al., working with orexin-A (15-33) amide, observed a significant drop in functional potency at the OX(1)R receptor when Leu(16), Leu(19), Leu(20), His(26), Gly(29), Ile(30), Leu(31), Thr(32), and Leu(33) were replaced by Ala. Ammoun et al. identified three areas of interest, which were the same for OX(1)R and OX(2)R receptors, as amino acids 15-17, 20 and 25-26 with the most marked reduction in activity being produced by the replacement of Leu(20) by Ala. We suggest that Leu(16), Leu(19), and Leu(20), which are in helix II, are likely responsible for binding orexin-A to the surface of the micelle.  相似文献   

12.
The solution structure of a fragment of the human U1A spliceosomal protein containing residues 2 to 117 (U1A117) determined using multi-dimensional heteronuclear NMR is presented. The C-terminal region of the molecule is considerably more ordered in the free protein than thought previously and its conformation is different from that seen in the crystal structure of the complex with U1 RNA hairpin II. The residues between Asp90 and Lys98 form an α-helix that lies across the β-sheet, with residues Ile93, Ile94 and Met97 making contacts with Leu44, Phe56 and Ile58. This interaction prevents solvent exposure of hydrophobic residues on the surface of the β-sheet, thereby stabilising the protein. Upon RNA binding, helix C moves away from this position, changing its orientation by 135° to allow Tyr13, Phe56 and Gln54 to stack with bases of the RNA, and also allowing Leu44 to contact the RNA. The new position of helix C in the complex with RNA is stabilised by hydrophobic interactions from Ile93 and Ile94 to Ile58, Leu 41, Val62 and His10, as well as a hydrogen bond between Ser91 and Thr11. The movement of helix C mainly involves changes in the main-chain torsion angles of Thr89, Asp90 and Ser91, the helix thereby acting as a "lid" over the RNA binding surface.  相似文献   

13.
The phenomenon of mutual annihilation of action between 17β estradiol (E2) and a selective estrogen receptor modulator (SERM), previously described in prepubertal rat diaphysis, epiphysis and uterus, has been investigated in ROS 17/2.8 rat osteoblastic cells and in transiently co-transfected cells in culture. In ROS 17/2.8 cells, the estrogen-induced marker enzyme creatine kinase B (CKB) was stimulated by raloxifene, tamoxifen and tamoxifen methiodide to a specific activity equal to or greater than that induced by 10 nM E2. However, when a fully inhibitory dose of any of these SERMS was given simultaneously with E2, no stimulation of CK activity resulted. Therefore, SERMS can be full agonists when acting alone, but complete antagonists to a super-physiological dose of estrogen. It is expected that excess tamoxifen would prevent the action of a SERM, but that the agonist activity of a SERM is abolished by 1000-fold less estrogen is a phenomenon without obvious explanation by classical pharmacology of competitive inhibition. To probe the mechanism of this interaction further, a ckb-CAT reporter plasmid, plus the human receptor expression plasmid, HEO, was transfected transiently into several cell types. In MCF-7 cells, a 1:10 ratio of E2 to tamoxifen produced mutual annihilation, but the same ratio in ROS 17/2.8 or HeLa cells led to synergistic stimulation. In HeLa cells, co-transfected with the more efficient wild-type estrogen receptor plasmid, HEGO, synergy was demonstrated only at sub-saturation levels of HEGO. We speculate that, in the presence of estradiol and a SERM, not only active homodimers would be formed, but also hetero-dimers of estrogen-liganded and tamoxifen-liganded receptor monomers, depending on the molar ratio of their ligands and their relative affinities. The resulting hetero-dimer conformation would change the specific receptor surface for interactions with the growing number of co-activators and co-repressors, structural changes which could help to explain the mutual annihilation and synergy phenomena and their cell selectivity.  相似文献   

14.
15.
16.
The preferred conformation of orexin-B, an orphan G-protein coupled receptor agonist (the human sequence is RSGPPGLQGRLQRLLQASGNHAAGILTM-NH(2)) has been determined by (1)H and (13)C 2D NMR spectroscopy and molecular modeling. Orexin-B has been implicated in sleep-wakefulness and feeding regulation. The membrane mimetic, sodium dodecylsulphate-d(25) (SDS), was used to mimic a physiological environment for the peptide. The secondary structure of orexin-B in SDS consists of two helical sections; helix I spans Leu(7) to Ser(18) and helix II spans Ala(22) to Leu(26). Helices I and II are believed to be involved in membrane binding, as is supported by the results of the spin label studies with 5-doxylstearic acid. Lee et al. (Eur. J. Biochem. 266, 831-839 (1999)) determined the [Phe(1)]-orexin-B conformation in water solution by NMR and showed that helix II extends from Ala(23) to Met(28). The C-terminal dipeptide, Thr(27)-Met(28), is unstructured is SDS, whereas in water it forms the end of helix II. The lack of apparent structure for Thr(27)-Met(28) in SDS allows the dipeptide to have conformational freedom to interact with the receptor. The conformation of orexin-B can now be used to explain the Ala substitution mutagenesis experiments and the D-amino acid substitution experiments (S. Asahi et al., Bioorg. Med. Chem. Lett. 13, 111-113, 2003). Asahi et al. have shown that Ala substitution from Gly(24) to Met(28) or D-amino acid substitution from Ala(23) to Met(28) causes a significant reduction in the potency of orexin-B for both OX(1)R and OX(2)R receptors. We postulate that helix II is involved in membrane recognition, and its binding to the membrane is essential for Thr(27)-Met(28) to adopt the correct receptor-binding conformation.  相似文献   

17.
18.
Tamoxifen, a pioneering selective estrogen receptor modulator (SERM), has long been a therapeutic choice for all stages of estrogen receptor (ER)-positive breast cancer. The clinical application of long-term adjuvant antihormone therapy for the breast cancer has significantly improved breast cancer survival. However, acquired resistance to SERM remains a significant challenge in breast cancer treatment. The evolution of acquired resistance to SERMs treatment was primarily discovered using MCF-7 tumors transplanted in athymic mice to mimic years of adjuvant treatment in patients. Acquired resistance to tamoxifen is unique because the growth of resistant tumors is dependent on SERMs. It appears that acquired resistance to SERM is initially able to utilize either E2 or a SERM as the growth stimulus in the SERM-resistant breast tumors. Mechanistic studies reveal that SERMs continuously suppress nuclear ER-target genes even during resistance, whereas they function as agonists to activate multiple membrane-associated molecules to promote cell growth. Laboratory observations in vivo further show that three phases of acquired SERM-resistance exists, depending on the length of SERMs exposure. Tumors with Phase I resistance are stimulated by both SERMs and estrogen. Tumors with Phase II resistance are stimulated by SERMs, but are inhibited by estrogen due to apoptosis. The laboratory models suggest a new treatment strategy, in which limited-duration, low-dose estrogen can be used to purge Phase II-resistant breast cancer cells. This discovery provides an invaluable insight into the evolution of drug resistance to SERMs, and this knowledge is now being used to justify clinical trials of estrogen therapy following long-term antihormone therapy. All of these results suggest that cell populations that have acquired resistance are in constant evolution depending upon selection pressure. The limited availability of growth stimuli in any new environment enhances population plasticity in the trial and error search for survival.  相似文献   

19.
Multiple nanosecond duration molecular dynamics simulations on the pore-lining M2 helix of the nicotinic acetylcholine receptor reveal how its structure and dynamics change as a function of environment. In water, the M2 helix partially unfolds to form a molecular hinge in the vicinity of a central Leu residue that has been implicated in the mechanism of ion channel gating. In a phospholipid bilayer, either as a single transmembrane helix, or as part of a pentameric helix bundle, the M2 helix shows less flexibility, but still exhibits a kink in the vicinity of the central Leu. The single M2 helix tilts relative to the bilayer normal by 12 degrees, in agreement with recent solid state NMR data (Opella et al., Nat Struct Biol 6:374-379, 1999). The pentameric helix bundle, a model for the pore domain of the nicotinic receptor and for channels formed by M2 peptides in a bilayer, is remarkably stable over a 2-ns MD simulation in a bilayer, provided one adjusts the pK(A)s of ionizable residues to their calculated values (when taking their environment into account) before starting the simulation. The resultant transbilayer pore shows fluctuations at either mouth which transiently close the channel. Proteins 2000;39:47-55.  相似文献   

20.
Recently, we have shown that the α-helix present at the N-termini of α7 nicotinic acetylcholine receptors plays a crucial role in their biogenesis. Structural data suggest that this helix interacts with the loop linking β-strands β2 and β3 (loop 3). We studied the role of this loop as well as its interaction with the helix in membrane receptor expression. Residues from Asp62 to Val75 in loop 3 were mutated. Mutations of conserved amino acids, such as Asp62, Leu65 and Trp67 abolished membrane receptor expression in Xenopus oocytes. Others mutations, at residues Asn68, Ala69, Ser70, Tyr72, Gly74, and Val 75 were less harmful although still produced significant expression decreases. Steady state levels of wild-type and mutant α7 receptors (L65A, W67A, and Y72A) were similar but the formation of pentameric receptors was impaired in the latter (W67A). Mutation of critical residues in subunits of heteromeric nicotinic acetylcholine receptors (α3β4) also abolished their membrane expression. Complementarity between the helix and loop 3 was evidenced by studying the expression of chimeric α7 receptors in which these domains were substituted by homologous sequences from other subunits. We conclude that loop 3 and its docking to the α-helix is an important requirement for receptor assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号