首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gamma irradiation (60Co) reduced KCl-stimulated voltage-dependent 45Ca2+ uptake in whole-brain, cortical, and striatal synaptosomes. The time course (3, 10, 30, and 60 s) of calcium uptake by irradiated (3 Gy) and nonirradiated synaptosomes, as well as the effect of KCl (15-65 mM), was measured in whole-brain synaptosomes. The fastest and highest rate of depolarization-dependent calcium uptake occurred at 3 s with 65 mM KCl. Irradiation reduced calcium uptake at all incubation times and KCl concentrations. Bay K 8644 enhancement of KCl-stimulated calcium influx was also reduced by radiation exposure. Nimodipine binding to dihydropyridine (DHP) L-type calcium channel receptors was not altered following radiation exposure. These results demonstrate an inhibitory effect of ionizing radiation on the voltage-sensitive calcium channels in rat brain synaptosomes that are not mediated by DHP receptors.  相似文献   

2.
The cyc1-9 ochre (UAA) mutant and the cyc1-179 amber (UAG) mutant of the yeast Saccharomyces cerevisiae were reverted with X-rays and -particles. The amino acid sequence changes of iso-1-cytochromes c from 36 of the intragenic revertants were determined by amino acid analysis and peptide mapping, aided by partial amino acid sequencing of 4 revertants. In addition, the DNA segments encompassing 3 unusual mutations with complex changes were cloned and sequenced. This study and previous studies of 16 other revertants of cyc1-9 and cyc1-179 revealed that ionizing radiation primarily induces single base-pair substitutions; 47 of the 52 revertants arose by transversions and transitions without any apparent preference. However, the A·T→T·A substitution at the first base pair for the cyc1-179 UAG codon, leading to the normal protein, was not detected, nor was it found previously in 32 revertants of cycl-179 obtained spontaneously or induced with various other mutagens; apparently, there is a prohibition of certain base-pair substitutions at certain sites in DNA. In addition, 5 of the 52 revertants arose by multiple changes within a short region of 11 base pairs. These consisted of the deletion of 6 base pairs, the substitution of 3 base pairs, and 3 different kinds of substitutions of two base pairs. Compared to other mutagens previously tested with the cyc1 system, ionizing radiation produces the most random types of base-pair substitutions.  相似文献   

3.
Ionizing radiation at clinical dose levels activates both pro- and anti-proliferative signal transduction pathways, the balance of which determines cell fate. The initiating and amplifying mechanisms involved in the activation are poorly understood. We demonstrate that one mechanism involves stimulation of constitutive nitric-oxide synthase (NOS) activity. NOS activity of Chinese hamster ovary cells was measured by the arginine --> citrulline conversion assay. Irradiation stimulated a transient activation of NOS with maximal activity at 5 min of post-irradiation. Western blot analysis and genetic manipulation by overexpression of wild type or dominant negative NOS mutant identify the radiation-induced isoform as NOS-1. Further evidence that NOS-1 is activated by radiation was the demonstration of radiation-induced cGMP formation in cells transiently transfected with the NO-dependent soluble guanylate cyclase. Protein Tyr nitration, a footprint of peroxynitrite formation, followed radiation exposure and was inhibited by expression of a dominant negative NOS-1 mutant. Radiation-induced ERK1/2 kinase activity, a cytoprotective response to radiation, was also blocked by inhibiting NOS activity. These experiments establish NO-dependent signal transduction pathways as being radio-responsive. Given the lipophilic and relatively stable properties of NO, these results also suggest a possible mechanism by which ionization events in one cell may activate signaling processes in adjacent cells.  相似文献   

4.
The importance of radiation modification of epigenetic activity in the general mechanism of radiobiological reactions is proved. The inheritable epigenetic changes induced by irradiation are one of the basic reasons of formation of the remote radiation pathology. It is noted that epigenetic inheritable changes of cells have the determined character distinguishing them from mutation changes, being individual and not directed. It is underlined the ability of ionizing radiation to modify a level of spontaneous genetic instability inherited in a number of cell generations on the epigenetic mechanism.  相似文献   

5.
Non-targeted bystander effects induced by ionizing radiation   总被引:1,自引:0,他引:1  
Morgan WF  Sowa MB 《Mutation research》2007,616(1-2):159-164
Radiation-induced bystander effects refer to those responses occurring in cells that were not subject to energy deposition events following ionizing radiation. These bystander cells may have been neighbors of irradiated cells, or physically separated but subject to soluble secreted signals from irradiated cells. Bystander effects have been observed in vitro and in vivo and for various radiation qualities. In tribute to an old friend and colleague, Anthony V. Carrano, who would have said "well what are the critical questions that should be addressed, and so what?", we review the evidence for non-targeted radiation-induced bystander effects with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure.  相似文献   

6.
Astronauts participating in extended lunar missions or the projected mission to Mars would likely be exposed to significant doses of high-linear energy transfer (LET) heavy energetic charged (HZE) particles. Exposure to even relatively low doses of such space radiation may result in a reduced latent period for and an increased incidence of lens opacification. However, the determinants of cataractogenesis induced by densely ionizing radiation have not been clearly elucidated. In the current study, we show that age at the time of exposure is a key determinant of cataractogenesis in rats whose eyes have been exposed to 2 Gy of (56)Fe ions. The rate of progression of cataractogenesis was significantly greater in the irradiated eyes of 1-year-old rats compared to young (56-day-old) rats. Furthermore, older ovariectomized rats that received exogenous estrogen treatment (17-β-estradiol) commencing 1 week prior to irradiation and continuing throughout the period of observation of up to approximately 600 days after irradiation showed an increased incidence of cataracts and faster progression of opacification compared to intact rats with endogenous estrogen or ovariectomized rats. The same potentiating effect (higher incidence, reduced latent period) was observed for irradiated eyes of young rats. Modulation of estrogen status in the 1-year-old animals (e.g., removal of estrogen by ovariectomy or continuous exposure to estrogen) did not increase the latent period or reduce the incidence to that of intact 56-day-old rats. Since the rapid onset and progression of cataracts in 1-year-old compared to 56-day-old rats was independent of estrogen status, we conclude that estrogen cannot account for the age-dependent differences in cataractogenesis induced by high-LET radiation.  相似文献   

7.
It is shown that in diploid yeast there are significant differences in the extent of irreparable damage after irradiation with X-rays, 60Co-gamma-rays and 30 MeV electrons. At extremely low dose rates, 60Co-gamma-rays were found to produce almost no irreparable damage at least up to 1200 Gy. X-rays, however, at the same low dose rate caused irreparable damage in the same dose range yielding a surviving fraction of 0.25 at 1200 Gy. For irradiations at high dose rate followed by liquid holding recovery the relative biological effectiveness of X-rays amounted to at least 4 for absorbed doses of up to 1000 Gy. With 30 MeV electrons at high dose rates an accumulation of sublethal and potentially lethal damage resulting in irreparable damage occurred above 1000 Gy. It is suggested that irreparable damage in yeast is due to a cooperative effect of neighbouring track ends.  相似文献   

8.
Thymocytes are one the most widely used cell models for the study of radiation-induced interphase death. This cell-type was chosen for the study of hyperthermic and radiation effects on two membrane-related processes implicated in the interphase death of cells: Na+-dependent 2-aminoisobutyric acid (AIB) transport and cyclic 3'-5' adenosine monophsophate formation. The response of AIB transport to heat is dose-dependent, but the biphasic thermal response curve (AIB uptake versus time) differs fom the sigmoidal radiation response curve. Heating thymocytes for 20-30 min at 43 degrees C stimulates AIB uptake. Additional heating at 43 degrees C, however, markedly reduces AIB uptake. Despite the immediate stimulating effect of heat (30 min at 43 degrees C), the thymocyte has already developed irrepairable impairments, as demonstrated by the fractionated heating experiments. The heat-induced impairment of AIB uptake is mainly on the Na+-dependent component of neutral amino-acid transport, affecting primarily the maximal rate of uptake, i.e. Vmax. Additional evidence for heat-induced plasma membrane damage is the alteration in cAMP levels. Heating thymocytes for 30 min or longer at 43 degrees C causes a massive rise in cAMP level within the cell. This differs from thymocytes exposed to radiation where no rise in cAMP is observed.  相似文献   

9.
Administration of methyl(methoxymethyl)nitrosamine to newborn Fischer 344 rats results in the preferential induction of renal tumors arising from the mesenchymal component of the kidney. DNA from a significant proportion of these tumors was capable of transforming NIH/3T3 cells. This report describes the renal tumor model, the detection of two different ras transforming genes in the kidney tumors (the N-ras oncogene in 1 and K-ras oncogene in 10 kidney tumors) and the characterization of DNA sequences specifying the transformed phenotype.  相似文献   

10.
Lee HJ  Lee YJ  Kang CM  Bae S  Jeoung D  Jang JJ  Lee SS  Cho CK  Lee YS 《Radiation research》2008,170(5):579-590
The aim of this work was to identify specific genes involved in rat mammary tumors induced by dimethylbenz(a)anthracene (DMBA) or radiation. More TUNEL- and PCNA-positive cells were present in mammary tumors induced by radiation than in tumors induced by DMBA, whereas DNA damage responses like p53 accumulation and histone H2AX phosphorylation were higher in DMBA-induced tumors, even though the pathology was similar in both types of tumors. cDNA microarray and real-time RT-PCR analysis of radiation- or DMBA-induced tumor tissues, revealed that stanniocalcin 2 (Stc2), interferon regulatory factor 1 (Irf1), interleukin 18 binding protein (Il18bp), and chloride channel calcium activated 3 (Clca3) were expressed in both, and that arachidonate 5-lipoxygenase activating protein 1 (Alox5ap) and cathepsin S (Ctss) were expressed only in radiation-induced tumors. No DMBA-specific gene signatures were found. Soft agar growth assays were carried out to identify the carcinogenic features of these specific genes. Cells stably transfected with Alox5ap, Ctss, Stc2, Irf1, Il18bp and Clca3 showed morphological changes compared to controls. These findings indicate different gene alterations in carcinogen- or radiation-induced mammary tumors with similar pathological stages.  相似文献   

11.
Summary Experimental data on photoreactivation of damage induced by ionizing radiation in yeast cells are presented. The value of photoreactivation was found to be the highest for the following conditions predicted by us as optimum ones: large volume of irradiated suspension, hypoxia and high energy sparsely ionizing radiation. A comparison of data for yeast and bacterial cells shows that Cerenkov emission from ionizing radiation may produce photoreactivated pyrimidine dimers in both prokaryotic and eukaryotic cell systems.  相似文献   

12.
Phytohemagglutinin stimulated human lymphocytes exhibit a 20 fold increase in DNA repair synthesis following ionizing radiation damage compared to the level of repair in unstimulated cells. The peak of repair synthesis coincides with that for DNA replication. Stimulated lymphocytes provide a relatively simple assay for ionizing radiation repair defects.  相似文献   

13.
We examined the influence of dose on the spectrum of mutations induced at the hypoxanthine guanine phosphoribosyltransferase (Hprt) locus in Chinese hamster ovary (CHO) cells. Independent CHO-K1 cell mutants at the Hprt locus were isolated from cells exposed to 0, 0.5, 1.5, 3.0 and 6.0 Gy (137)Cs gamma rays, and the genetic changes responsible for the mutations were determined by multiplex polymerase chain reaction (PCR)-based exon deletion analysis. We observed dose-dependent changes in mutation spectra. At low doses, the principal radiation-induced mutations were point mutations. With increasing dose, multibase deletion mutations became the predominant mutation type such that by 6.0 Gy, there were almost three times more deletion mutations than point mutations. The dose response for induction of point mutations was linear while that for multibase deletions fit a linear-quadratic response. There was a biphasic distribution of deletion sizes, and different dose responses for small compared to large deletions. The frequency of large (>36 kb) total gene deletions increased exponentially, implying that they develop from the interaction between two independent events. In contrast, the dose response for deletion mutations of less than 10 kb was nearly linear, suggesting that these types of mutations develop mostly from single events and not the interactions between two independently produced lesions. The observation of dose-dependent changes in radiation-induced mutation spectra suggests that the types of alterations and therefore the risks from low-dose radiation exposure cannot be easily extrapolated from high-dose effects.  相似文献   

14.
Chastel C  Jiricny J  Jaussi R 《DNA Repair》2004,3(3):201-215
Radiotherapy is one of the principal modalities of cancer treatment, but the delivery of a curative dose of ionizing radiation (IR) to the tumour is frequently limited by the need to protect the normal tissues within the irradiated area from radiation damage. This problem could be circumvented if tumour cells could be selectively sensitized to killing by IR. One way to achieve this goal would be to transduce the tumour cells with expression vectors carrying toxin genes under the control of promoters that are inactive unless induced by IR. For this approach to be successful, two parameters must be met: (i) the expression vector has to be delivered to the tumour or its immediate vicinity (e.g. its vasculature) and (ii) the promoter driving the expression of the toxin gene has to have negligible basal activity, yet has to be activated by clinically-achievable doses of IR. Several vectors that fulfil these criteria are currently reaching clinical trials. In this review, we examine the response of mammalian cells to IR, and the current status of radiation-induced suicide gene therapy that is dependent on this response.  相似文献   

15.
Effects of ionizing radiation on biological membranes include alterations in membrane proteins, peroxidation of unsaturated lipids accompanied by perturbations of the lipid bilayer polarity. We have measured radiation-induced membrane modifications using two fluorescent lipophilic membrane probes (TMA-DPH and DPH) by the technique of fluorescence polarization on two different cell lines (Chinese hamster ovary CHO-K1 and lymphoblastic RPMI 1788 cell lines). γ-Irradiation was performed using a 60Co source with dose rates of 0.1 and 1 Gy/min for final doses of 4 and 8 Gy. Irradiation induced a decrease of fluorescence intensity and anisotropy of DPH and TMA-DPH in both cell lines, which was dose-dependent but varied inversely with the dose rate. Moreover, the fluorescence anisotropy measured in lymphoblastic cells using TMA-DPH was found to decrease as early as 1 h after irradiation, and remained significantly lower 24 h after irradiation. This study indicates that some alterations of membrane fluidity are observed after low irradiation doses and for some time thereafter. The changes in membrane fluidity might reflect oxidative damage, thus confirming a radiation-induced fluidization of biological membranes. The use of membrane fluidity changes as a potential biological indicator of radiation injury is discussed. Received: 14 May 1996 / Accepted in revised form: 30 September 1996  相似文献   

16.
Epidermal Growth Factor (EGF) and prostaglandins (PGs) E2 and F2a, have been shown to stimulate primary hepatocyte proliferation. Verapamil (5-20 microM), a calcium channel inhibitor, inhibited hepatocyte DNA synthesis and c-myc expression, induced by EGF (50 ng/dish) and prostaglandins (1-12 micrograms/dish). Indomethacin (20-100 microM) decreased significantly the EGF-induced hepatocyte DNA synthesis and c-myc expression. Addition of PGs (1-9 micrograms) in hepatocyte cultures treated with EGF+indomethacin (100 microM) restored the capacity of EGF to increase c-myc expression and DNA synthesis. We propose that arachidonic acid derivatives and calcium channel blockers modulate c-myc expression in primary hepatocytes.  相似文献   

17.
A survey is given of continuous-time Markov chain models for ionizing radiation damage to the genome of mammalian cells. In such models, immediate damage induced by the radiation is regarded as a batch-Poisson arrival process of DNA double-strand breaks (DSBs). Enzymatic modification of the immediate damage is modeled as a Markov process similar to those described by the master equation of stochastic chemical kinetics. An illustrative example is the restitution/complete-exchange model. The model postulates that, after being induced by radiation, DSBs subsequently either undergo enzymatically mediated restitution (repair) or participate pairwise in chromosome exchanges. Some of the exchanges make irremediable lesions such as dicentric chromosome aberrations. One may have rapid irradiation followed by enzymatic DSB processing or have prolonged irradiation with both DSB arrival and enzymatic DSB processing continuing throughout the irradiation period. Methods for analyzing the Markov chains include using an approximate model for expected values, the discrete-time Markov chain embedded at transitions, partial differential equations for generating functions, normal perturbation theory, singular perturbation theory with scaling, numerical computations, and certain matrix methods that combine Perron-Frobenius theory with variational estimates. Applications to experimental results on expected values, variances, and statistical distributions of DNA lesions are briefly outlined. Continuous-time Markov chains are the most systematic of those radiation damage models that treat DSB-DSB interactions within the cell nucleus as homogeneous (e.g., ignore diffusion limitations). They contain virtually all other relevant homogeneous models and semiempirical summaries as special cases, limiting cases, or approximations. However, the Markov models do not seem to be well suited for studying spatial dependence of DSB interactions, which is known to be important in some situations.  相似文献   

18.
Activation of c-myc promoter by c-myc protein in serum starved cells   总被引:1,自引:0,他引:1  
  相似文献   

19.
Point mutations and deletions in mitochondrial DNA (mtDNA) accumulate as a result of oxidative stress, including ionizing radiation. As a result, dysfunctional mitochondria suffer from a decline in oxidative phosphorylation and increased release of superoxides and other reactive oxygen species (ROS). Through this mechanism, mitochondria have been implicated in a host of degenerative diseases. Associated with this type of damage, and serving as a marker of total mtDNA mutations and deletions, the accumulation of a specific 4977-bp deletion, known as the common deletion (Delta-mtDNA(4977)), takes place. The Delta-mtDNA(4977) has been reported to increase with age and during the progression of mitochondrial degeneration. The purpose of this study was to investigate whether ionizing radiation induces the formation of the common deletion in a variety of human cell lines and to determine if it is associated with cellular radiosensitivity. Cell lines used included eight normal human skin fibroblast lines, a radiosensitive non-transformed and an SV40 transformed ataxia telangiectasia (AT) homozygous fibroblast line, a Kearns Sayre Syndrome (KSS) line known to contain mitochondrial deletions, and five human tumor lines. The Delta-mtDNA(4977) was assessed by polymerase chain reaction (PCR). Significant levels of Delta-mtDNA(4977) accumulated 72 h after irradiation doses of 2, 5, 10 or 20 Gy in all of the normal lines with lower response in tumor cell lines, but the absolute amounts of the induced deletion were variable. There was no consistent dose-response relationship. SV40 transformed and non-transformed AT cell lines both showed significant induction of the deletion. However, the five tumor cell lines showed only a modest induction of the deletion, including the one line that was deficient in DNA damage repair. No relationship was found between sensitivity to radiation-induced deletions and sensitivity to cell killing by radiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号