首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 791 毫秒
1.
Genetic evidence predicts a causative role for amyloid-beta (A beta) in Alzheimer's disease. Recent debate has focused on whether fibrils (amyloid) or soluble oligomers of A beta are the active species that contribute to neurodegeneration and dementia. We developed two aggregation protocols for the consistent production of stable oligomeric or fibrillar preparations of A beta-(1-42). Here we report that oligomers inhibit neuronal viability 10-fold more than fibrils and approximately 40-fold more than unaggregated peptide, with oligomeric A beta-(1-42)-induced inhibition significant at 10 nm. Under A beta-(1-42) oligomer- and fibril-forming conditions, A beta-(1-40) remains predominantly as unassembled monomer and had significantly less effect on neuronal viability than preparations of A beta-(1-42). We applied the aggregation protocols developed for wild type A beta-(1-42) to A beta-(1-42) with the Dutch (E22Q) or Arctic (E22G) mutations. Oligomeric preparations of the mutations exhibited extensive protofibril and fibril formation, respectively, but were not consistently different from wild type A beta-(1-42) in terms of inhibition of neuronal viability. However, fibrillar preparations of the mutants appeared larger and induced significantly more inhibition of neuronal viability than wild type A beta-(1-42) fibril preparations. These data demonstrate that protocols developed to produce oligomeric and fibrillar A beta-(1-42) are useful in distinguishing the structural and functional differences between A beta-(1-42) and A beta-(1-40) and genetic mutations of A beta-(1-42).  相似文献   

2.
Aβ (amyloid-β peptide) assembles to form amyloid fibres that accumulate in senile plaques associated with AD (Alzheimer's disease). The major constituent, a 42-residue Aβ, has the propensity to assemble and form soluble and potentially cytotoxic oligomers, as well as ordered stable amyloid fibres. It is widely believed that the cytotoxicity is a result of the formation of transient soluble oligomers. This observed toxicity may be associated with the ability of oligomers to associate with and cause permeation of lipid membranes. In the present study, we have investigated the ability of oligomeric and fibrillar Aβ42 to simultaneously associate with and affect the integrity of biomimetic membranes in vitro. Surface plasmon field-enhanced fluorescence spectroscopy reveals that the binding of the freshly dissolved oligomeric 42-residue peptide binds with a two-step association with the lipid bilayer, and causes disruption of the membrane resulting in leakage from vesicles. In contrast, fibrils bind with a 2-fold reduced avidity, and their addition results in approximately 2-fold less fluorophore leakage compared with oligomeric Aβ. Binding of the oligomers may be, in part, mediated by the GM1 ganglioside receptors as there is a 1.8-fold increase in oligomeric Aβ binding and a 2-fold increase in permeation compared with when GM1 is not present. Atomic force microscopy reveals the formation of defects and holes in response to oligomeric Aβ, but not preformed fibrillar Aβ. The results of the present study indicate that significant membrane disruption arises from association of low-molecular-mass Aβ and this may be mediated by mechanical damage to the membranes by Aβ aggregation. This membrane disruption may play a key role in the mechanism of Aβ-related cell toxicity in AD.  相似文献   

3.
Alzheimer's disease (AD) is characterized by the aggregation and subsequent deposition of misfolded beta-amyloid (Abeta) peptide. Previous studies show that aggregated Abeta is more toxic in oligomeric than in fibrillar form, and that each aggregation form activates specific molecular pathways in the cell. We hypothesize that these differences between oligomers and fibrils are related to their different accessibility to the intracellular space. To this end we used fluorescently labelled Abeta1-42 and demonstrate that Abeta1-42 oligomers readily enter both HeLa and differentiated SKNSH cells whereas fibrillar Abeta1-42 is not internalized. Oligomeric Abeta1-42 is internalized by an endocytic process and is transported to the lysosomes. Inhibition of uptake specifically inhibits oligomer but not fibril toxicity. Our study indicates that selective uptake of oligomers is a determinant of oligomer specific Abeta toxicity.  相似文献   

4.
Although the formation of β-amyloid (Aβ) deposits in the brain is a hallmark of Alzheimer disease (AD), the soluble oligomers rather than the mature amyloid fibrils most likely contribute to Aβ toxicity and neurodegeneration. Thus, the discovery of agents targeting soluble Aβ oligomers is highly desirable for early diagnosis prior to the manifestation of a clinical AD phenotype and also more effective therapies. We have previously reported that a novel 15-amino acid peptide (15-mer), isolated via phage display screening, targeted Aβ and attenuated its neurotoxicity (Taddei, K., Laws, S. M., Verdile, G., Munns, S., D''Costa, K., Harvey, A. R., Martins, I. J., Hill, F., Levy, E., Shaw, J. E., and Martins, R. N. (2010) Neurobiol. Aging 31, 203–214). The aim of the current study was to generate and biochemically characterize analogues of this peptide with improved stability and therapeutic potential. We demonstrated that a stable analogue of the 15-amino acid peptide (15M S.A.) retained the activity and potency of the parent peptide and demonstrated improved proteolytic resistance in vitro (stable to t = 300 min, c.f. t = 30 min for the parent peptide). This candidate reduced the formation of soluble Aβ42 oligomers, with the concurrent generation of non-toxic, insoluble aggregates measuring up to 25–30 nm diameter as determined by atomic force microscopy. The 15M S.A. candidate directly interacted with oligomeric Aβ42, as shown by coimmunoprecipitation and surface plasmon resonance/Biacore analysis, with an affinity in the low micromolar range. Furthermore, this peptide bound fibrillar Aβ42 and also stained plaques ex vivo in brain tissue from AD model mice. Given its multifaceted ability to target monomeric and aggregated Aβ42 species, this candidate holds promise for novel preclinical AD imaging and therapeutic strategies.  相似文献   

5.
The amyloid cascade hypothesis suggests that the insoluble and fibrillar form of beta-amyloid (A beta) may play a primary pathogenic role in Alzheimer disease at the molecular level. However, neither the rate of dementia nor the extent of neuronal change seems to correlate with the levels of amyloidotic plaques (i.e., aggregated/fibrillar A beta). Recent evidence suggests, however, that neurotoxicity may be exerted also by rather small soluble aggregates of A beta, including oligomers. To characterize the mechanisms underlying toxicity mediated by the various aggregation states of A beta peptides is then a major goal of research. In this work we investigated the effects of fibrillar, prefibrillar, and oligomeric A beta(1-42) on the induction of oxidative stress, cell death, and BACE-1 expression in NT2 neuronal cells. We found that prefibrillar and oligomeric A beta(1-42) resulted in a more dramatic increase in the oxidative stress markers 4-hydroxynonenal and hydrogen peroxide compared to fibrillar A beta(1-42). Moreover, increased oxidative stress levels also resulted in a more rapid and significant induction of both apoptotic and necrotic neuronal cell death. Accordingly, fibrillar A beta(1-42), but not the soluble nonfibrillar forms, was the only condition able to up-regulate BACE-1 expression and activity.  相似文献   

6.
The amyloid beta peptide (A beta) is crucial for the pathogenesis of Alzheimer's disease. Aggregation of monomeric A beta into insoluble amyloid fibrils proceeds through several soluble A beta intermediates, including protofibrils, which are believed to be central in the disease process. The main reason for this is their implication in familial Alzheimer's disease with the Arctic amyloid precursor protein mutation (E693G). This mutation gives rise to early onset Alzheimer's disease, and synthetic A beta 1-40Arctic displays an enhanced rate of protofibril formation in vitro[Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Naslund J & Lannfelt L. (2001) Nat Neurosci4, 887-893]. To increase our understanding of the mechanisms involved in A beta aggregation, especially A beta monomer oligomerization into protofibrils and protofibril fibrillization into fibrils, the kinetics of A beta 1-42wt and A beta 1-42Arctic aggregation were examined under different physiochemical conditions, such as concentration, temperature, ionic strength and pH. We used size exclusion chromatography for this purpose, where monomers are separated from protofibrils, and fibrils are separated from protofibrils in a centrifugation step. The Arctic mutation significantly accelerated both A beta 1-42wt protofibril formation and protofibril fibrillization. In addition, we demonstrated that two distinct chemical processes - monomer oligomerization and protofibril fibrillization - were affected differently by changes in the micro-environment and that the Arctic mutation alters the peptide response to such changes.  相似文献   

7.
Senile plaques, the invariable hallmark and likely proximal cause of Alzheimer's disease (AD), are structured depositions of the 40- and 42-residue forms of the A beta peptide. Conversely, diffuse plaques, which are not associated with neurodegeneration, consist mainly of unstructured A beta 42. We have investigated the interaction between A beta 40 and A beta 42 through an assay, which involves labeling both variants with an environment-sensitive fluorophore. We have monitored association of A beta without fibrillar seeds, which allows investigation of molecular species preceding fibrils. Immediately upon mixture, A beta 40 and A beta 42 associate into mixed aggregates, in which the peptides are unstructured and relatively accessible to water. When left to incubate for an extended period, larger, more tightly packed aggregates, which show secondary structure, replace the small, unstructured aggregates formed earlier. Our results show that in vitro the two A beta variants coassemble early in the fibrillogenesis pathway. The ease of formation for mixed and homogeneous aggregates is similar. A change in the local A beta variant ratio can therefore have a significant impact on A beta aggregation; indeed such a change has been reported in some types of familial AD.  相似文献   

8.
Amyloid plaques in brain, composed of aggregates of amyloid-beta peptide, play a central role in the pathogenesis of Alzheimer's disease and represent a good target for treatment. We have shown previously that a 5-amino acid beta-sheet breaker peptide (iA beta 5p), end-protected, has the ability to induce a dramatic reduction in amyloid deposition in two different transgenic Alzheimer's models (Permanne, B., Adessi, C., Saborio, G. P., Fraga, S., Frossard, M.-J., Dewachter, I., Van Dorpe, J., Banks, W. A., Van Leuven, F., and Soto, C. (2002) FASEB J. 16, 860-862). The aim of this study was to evaluate the effect of chemical modifications of the peptide bonds at the metabolite cleavage sites on the pharmacological properties of iA beta 5p derivatives. Using a rational approach, peptide analogs were designed and tested for in vitro activity and enzymatic stability. One peptide analog containing a methyl group introduced at the nitrogen atom of one amide bond showed increased stability in vitro, a 10-fold higher in vivo half-life, and good brain uptake compared with iA beta 5p while maintaining a similar activity in vitro. Our results suggest that the pharmacological profile of beta-sheet breaker peptides can be improved to produce compounds with drug-like properties that might offer a new promise in the treatment of Alzheimer's disease.  相似文献   

9.
beta-Amyloid peptide (beta A) is a major fibrillar component of neuritic plaques in Alzheimer's disease (AD) brains and is related to the pathogenesis of the disease. In this study, using electron microscopy, we describe herein the results concerning the efficacy of compounds that can dissolve preformed beta A fibrils in vitro. For such a purpose, two hydrosoluble and biocompatible polymers such as polyethylene glycol and poly-L-lysine were used. The poly-L-lysine appears as a potent dissolver of preformed beta A fibrils in vitro. Its efficiency is instantaneous. Poly-L-lysine can be used as a universal dissolver of all types of oligomeric beta-sheet conformation, precursor of the fibrils. This finding provides the basis for future investigation of the therapeutic potential of poly-L-lysine in terms of preventing and/or retarding amyloidogenesis in AD and other types of amyloid-related disorders.  相似文献   

10.
Amyloid β-peptide (Aβ) is directly linked to Alzheimer's disease (AD). In its monomeric form, Aβ aggregates to produce fibrils and a range of oligomers, the latter being the most neurotoxic. Dysregulation of Ca(2+) homeostasis in aging brains and in neurodegenerative disorders plays a crucial role in numerous processes and contributes to cell dysfunction and death. Here we postulated that calcium may enable or accelerate the aggregation of Aβ. We compared the aggregation pattern of Aβ(1-40) and that of Aβ(1-40)E22G, an amyloid peptide carrying the Arctic mutation that causes early onset of the disease. We found that in the presence of Ca(2+), Aβ(1-40) preferentially formed oligomers similar to those formed by Aβ(1-40)E22G with or without added Ca(2+), whereas in the absence of added Ca(2+) the Aβ(1-40) aggregated to form fibrils. Morphological similarities of the oligomers were confirmed by contact mode atomic force microscopy imaging. The distribution of oligomeric and fibrillar species in different samples was detected by gel electrophoresis and Western blot analysis, the results of which were further supported by thioflavin T fluorescence experiments. In the samples without Ca(2+), Fourier transform infrared spectroscopy revealed conversion of oligomers from an anti-parallel β-sheet to the parallel β-sheet conformation characteristic of fibrils. Overall, these results led us to conclude that calcium ions stimulate the formation of oligomers of Aβ(1-40), that have been implicated in the pathogenesis of AD.  相似文献   

11.
J. Neurochem. (2012) 122, 883-890. ABSTRACT: Amyloid β-protein (Aβ) and α-synuclein (αS) are the primary components of amyloid plaques and Lewy bodies (LBs), respectively. Previous in vitro and in vivo studies have suggested that interactions between Aβ and αS are involved in the pathogenesis of Alzheimer's disease and LB diseases. However, the seeding effects of their aggregates on their aggregation pathways are not completely clear. To investigate the cross-seeding effects of Aβ and αS, we examined how sonicated fibrils or cross-linked oligomers of Aβ40, Aβ42, and αS affected their aggregation pathways using thioflavin T(S) assay and electron microscopy. Fibrils and oligomers of Aβ40, Aβ42, and αS acted as seeds, and affected the aggregation pathways within and among species. The seeding effects of αS fibrils were higher than those of Aβ40 and Aβ42 fibrils in the Aβ40 and Aβ42 aggregation pathways, respectively. We showed that Aβ and αS acted as seeds and affected each other's aggregation pathways in vitro, which may contribute to our understanding of the molecular mechanisms of interactions between Alzheimer's disease and LB diseases pathologies.  相似文献   

12.
Alzheimer's disease (AD) is characterized by large numbers of senile plaques in the brain that consist of fibrillar aggregates of 40- and 42-residue amyloid-beta (Abeta) peptides. However, the degree of dementia in AD correlates better with the concentration of soluble Abeta species assayed biochemically than with histologically determined plaque counts, and several investigators now propose that soluble aggregates of Abeta are the neurotoxic agents that cause memory deficits and neuronal loss. These endogenous aggregates are minor components in brain extracts from AD patients and transgenic mice that express human Abeta, but several species have been detected by gel electrophoresis in sodium dodecylsulfate (SDS) and isolated by size exclusion chromatography (SEC). Endogenous Abeta aggregation is stimulated at cellular interfaces rich in lipid rafts, and anionic micelles that promote Abeta aggregation in vitro may be good models of these interfaces. We previously found that micelles formed in dilute SDS (2 mM) promote Abeta(1-40) fiber formation by supporting peptide interaction on the surface of a single micelle complex. In contrast, here we report that monomeric Abeta(1-42) undergoes an immediate conversion to a predominant beta-structured conformation in 2 mM SDS which does not proceed to amyloid fibrils. The conformational change is instead rapidly followed by the near quantitative conversion of the 4 kDa monomer SDS gel band to 8-14 kDa bands consistent with dimers through tetramers. Removal of SDS by dialysis gave a shift in the predominant SDS gel bands to 30-60 kDa. While these oligomers resemble the endogenous aggregates, they are less stable. In particular, they do not elute as discrete species on SEC, and they are completed disaggregated by boiling in 1% SDS. It appears that endogenous oligomeric Abeta aggregates are stabilized by undefined processes that have not yet been incorporated into in vitro Abeta aggregation procedures.  相似文献   

13.
The amyloid beta-protein (1-42) is a major constituent of the abnormal extracellular amyloid plaque that characterizes the brains of victims of Alzheimer's disease. Two peptides, with sequences derived from the previously unexplored C-terminal region of the beta-protein, beta 26-33 (H2N-SNKGAIIG-CO2H) and beta 34-42 (H2N-LMVGGVVIA-CO2H), were synthesized and purified, and their solubility and conformational properties were analyzed. Peptide beta 26-33 was found to be freely soluble in water; however, peptide beta 34-42 was virtually insoluble in aqueous media, including 6 M guanidinium thiocyanate. The peptides formed assemblies having distinct fibrillar morphologies and different dimensions as observed by electron microscopy of negatively stained samples. X-ray diffraction revealed that the peptide conformation in the fibrils was cross-beta. A correlation between solubility and beta-structure formation was inferred from FTIR studies: beta 26-33, when dissolved in water, existed as a random coil, whereas the water-insoluble peptide beta 34-42 possessed antiparallel beta-sheet structure in the solid state. Solubilization of beta 34-42 in organic media resulted in the disappearance of beta-structure. These data suggest that the sequence 34-42, by virtue of its ability to form unusually stable beta-structure, is a major contributor to the insolubility of the beta-protein and may nucleate the formation of the fibrils that constitute amyloid plaque.  相似文献   

14.
beta-amyloid peptide (Abeta) is one of the main protein components of senile plaques associated with Alzheimer's disease (AD). Abeta readily aggregates to forms fibrils and other aggregated species that have been shown to be toxic in a number of studies. In particular, soluble oligomeric forms are closely related to neurotoxicity. However, the relationship between neurotoxicity and the size of Abeta aggregates or oligomers is still under investigation. In this article, we show that different Abeta incubation conditions in vitro can affect the rate of Abeta fibril formation, the conformation and stability of intermediates in the aggregation pathway, and toxicity of aggregated species formed. When gently agitated, Abeta aggregates faster than Abeta prepared under quiescent conditions, forming fibrils. The morphology of fibrils formed at the end of aggregation with or without agitation, as observed in electron micrographs, is somewhat different. Interestingly, intermediates or oligomers formed during Abeta aggregation differ greatly under agitated and quiescent conditions. Unfolding studies in guanidine hydrochloride indicate that fibrils formed under quiescent conditions are more stable to unfolding in detergent than aggregation associated oligomers or Abeta fibrils formed with agitation. In addition, Abeta fibrils formed under quiescent conditions were less toxic to differentiated SH-SY5Y cells than the Abeta aggregation associated oligomers or fibrils formed with agitation. These results highlight differences between Abeta aggregation intermediates formed under different conditions and provide insight into the structure and stability of toxic Abeta oligomers.  相似文献   

15.
The green tea compound epigallocatechin-3-gallate (EGCG) inhibits Alzheimer's disease β-amyloid peptide (Aβ) neurotoxicity. Solution-state NMR allows probing initial EGCG-Aβ interactions. We show that EGCG-induced Aβ oligomers adopt a well-defined structure and are amenable for magic angle spinning solid-state NMR investigations. We find that EGCG interferes with the aromatic hydrophobic core of Aβ. The C-terminal part of the Aβ peptide (residues 22-39) adopts a β-sheet conformation, whereas the N-terminus (residues 1-20) is unstructured. The characteristic salt bridge involving residues D23 and K28 is present in the structure of these oligomeric Aβ aggregates as well. The structural analysis of small-molecule-induced amyloid aggregates will open new perspectives for Alzheimer's disease drug development.  相似文献   

16.
Aggregation and accumulation of the microtubule-associated protein tau are associated with cognitive decline and neuronal degeneration in Alzheimer's disease and other tauopathies. Thus, preventing the transition of tau from a soluble state to insoluble aggregates and/or reversing the toxicity of existing aggregates would represent a reasonable therapeutic strategy for treating these neurodegenerative diseases. Here we demonstrate that molecular chaperones of the heat shock protein 70 (Hsp70) family are potent inhibitors of tau aggregation in vitro, preventing the formation of both mature fibrils and oligomeric intermediates. Remarkably, addition of Hsp70 to a mixture of oligomeric and fibrillar tau aggregates prevents the toxic effect of these tau species on fast axonal transport, a critical process for neuronal function. When incubated with preformed tau aggregates, Hsp70 preferentially associated with oligomeric over fibrillar tau, suggesting that prefibrillar oligomeric tau aggregates play a prominent role in tau toxicity. Taken together, our data provide a novel molecular basis for the protective effect of Hsp70 in tauopathies.  相似文献   

17.
Several protein conformational disorders (Parkinson and prion diseases) are linked to aberrant folding of proteins into prefibrillar oligomers and amyloid fibrils. Although prefibrillar oligomers are more toxic than their fibrillar counterparts, it is difficult to decouple the origin of their dissimilar toxicity because oligomers and fibrils differ both in terms of structure and size. Here we report the characterization of two oligomers of the 42-residue amyloid β (Aβ42) peptide associated with Alzheimer disease that possess similar size and dissimilar toxicity. We find that Aβ42 spontaneously forms prefibrillar oligomers at Aβ concentrations below 30 μm in the absence of agitation, whereas higher Aβ concentrations lead to rapid formation of fibrils. Interestingly, Aβ prefibrillar oligomers do not convert into fibrils under quiescent assembly conditions but instead convert into a second type of oligomer with size and morphology similar to those of Aβ prefibrillar oligomers. Strikingly, this alternative Aβ oligomer is non-toxic to mammalian cells relative to Aβ monomer. We find that two hydrophobic peptide segments within Aβ (residues 16-22 and 30-42) are more solvent-exposed in the more toxic Aβ oligomer. The less toxic oligomer is devoid of β-sheet structure, insoluble, and non-immunoreactive with oligomer- and fibril-specific antibodies. Moreover, the less toxic oligomer is incapable of disrupting lipid bilayers, in contrast to its more toxic oligomeric counterpart. Our results suggest that the ability of non-fibrillar Aβ oligomers to interact with and disrupt cellular membranes is linked to the degree of solvent exposure of their central and C-terminal hydrophobic peptide segments.  相似文献   

18.
Alzheimer's disease is characterized by the presence of extracellular deposits of amyloid, primarily composed of the amyloid β-protein (Aβ). A growing body of evidence indicates that oligomeric forms of Aβ play a critical role in disease causation. Soybean isoflavones are flavonoids with an isoflavone backbone. Isoflavones have been reported to protect against Aβ-induced neurotoxicity in cultured cell systems, the molecular mechanisms remain unclear. Our previous studies demonstrated that red wine-related flavonoids with a flavone backbone are able to inhibit Aβ assembly and destabilize preformed Aβ aggregates. Here, we show that isoflavones, especially glycitein and genistein, have anti-fibrillization, anti-oligomerization and fibril-destabilizing effects on Aβ(1-40) and Aβ(1-42)in vitro at physiological pH and temperature, by using nucleation-dependent polymerization monitored by thioflavin T fluorescence, atomic force microscopy, electron microscopy, and photo-induced cross-linking of unmodified proteins followed by SDS-PAGE. Our three-dimensional fluorescence spectroscopic analyses demonstrated that glycitein interacted with Aβ monomers, oligomers and fibrils, indicating specific binding of glycitein to these Aβ species. Glycitein also interacted with different Aβ fragments (Aβ(1-42), Aβ(1-40), Aβ(1-16) and Aβ(25-35)), exhibiting the highest fluorescence enhancement with Aβ(25-35). We speculated that glycitein's anti-amyloidogenic properties are specifically mediated by its binding to Aβ monomers, oligomers and fibrils. Isoflavones may hold promise as a treatment option for preventative strategies targeting amyloid formation in Alzheimer's disease.  相似文献   

19.
Anguiano M  Nowak RJ  Lansbury PT 《Biochemistry》2002,41(38):11338-11343
Islet amyloid polypeptide (IAPP) and insulin are copackaged and cosecreted by pancreatic islet beta-cells. Non-insulin-dependent (type II) diabetes mellitus (NIDDM) is characterized by dysfunction and depletion of these beta-cells and also, in more than 90% of patients, amyloid plaques containing fibrillar IAPP. An aggregated but not necessarily fibrillar form of IAPP is toxic in cell culture, suggesting that prefibrillar oligomeric (protofibrillar) IAPP may be pathogenic. We report here that IAPP generates oligomeric species in vitro that are consumed as beta-sheet-rich fibrils grow. Protofibrillar IAPP, like protofibrillar alpha-synuclein, which is implicated in Parkinson's disease pathogenesis, permeabilizes synthetic vesicles by a pore-like mechanism. The formation of the IAPP amyloid pore is temporally correlated to the formation of early IAPP oligomers and its disappearance to the appearance of amyloid fibrils. Neither pores nor oligomers were formed by the nonfibrillogenic rat IAPP variant. The IAPP amyloid pore may be critical to the pathogenic mechanism of NIDDM, as other amyloid pores may be to Alzheimer's disease and Parkinson's disease.  相似文献   

20.
Abeta(1-40) is one of the main components of the fibrils found in amyloid plaques, a hallmark of brains affected by Alzheimer's disease. It is known that prior to the formation of amyloid fibrils in which the peptide adopts a well-ordered intermolecular beta-sheet structure, peptide monomers associate forming low and high molecular weight oligomers. These oligomers have been previously described in electron microscopy, AFM, and exclusion chromatography studies. Their specific secondary structures however, have not yet been well established. A major problem when comparing aggregation and secondary structure determinations in concentration-dependent processes such as amyloid aggregation is the different concentration range required in each type of experiment. In the present study we used the dye Thioflavin T (ThT), Fourier-transform infrared spectroscopy, and electron microscopy in order to structurally characterize the different aggregated species which form during the Abeta(1-40) fibril formation process. A unique sample containing 90microM peptide was used. The results show that oligomeric species which form during the lag phase of the aggregation kinetics are a mixture of unordered, helical, and intermolecular non-fibrillar beta-structures. The number of oligomers and the amount of non-fibrillar beta-structures grows throughout the lag phase and during the elongation phase these non-fibrillar beta-structures are transformed into fibrillar (amyloid) beta-structures, formed by association of high molecular weight intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号