首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study evaluated the effect of different sublethal concentrations of copper in water (0, 0.15, 0.3 and 0.5 p.p.m.) on the behavioural response, growth performance, and whole body and liver composition of Oreochromis niloticus. Hyperactivity and reduced exploratory behaviour were observed when fishes were subjected to different levels of copper in water as compared with the control. Fish refused to accept the feed immediately after exposure and only began taking it up after about 4–5 h as compared with the control. Weight gain, specific growth rate and condition factor (k) decreased significantly (P < 0.05) as compared with the control; this decrease was linearly correlated with the increase of copper concentration in water. Exposure of the fish to different copper concentrations in water significantly (P < 0.05) reduced their feed consumption as compared with the control. Values for the feed conversion ratio increased (P < 0.05) whereas the protein efficiency ratio and net protein retention values decreased (P < 0.05) with the copper level increase in water. The hepatosomatic index increased with the copper concentration increase in water. Body moisture and ash contents were the highest (P < 0.05) whereas the fat and gross energy contents were the lowest (P < 0.05) in fish reared in water containing 0.5 p.p.m. of copper as compared with others. No significant (P < 0.05) differences were observed in the whole body crude protein content of fish exposed to different concentrations of copper as compared with the control. Liver moisture and ash contents increased (P < 0.05) whereas the crude protein, fat, nitrogen free extract and gross energy contents decreased (P < 0.05) when the fish were exposed to different concentrations of copper as compared with the control. The liver glycogen level decreased whereas the copper level in the whole body and liver increased significantly (P < 0.05) with the copper concentration increase in water.  相似文献   

2.
鱼体(去鳃)和鱼鳃对不同形态铜的积累特征   总被引:9,自引:0,他引:9  
梁涛  陶澍  林健枝 《生态学报》1999,19(5):763-766
在实验室条件下研究实验鱼Paracheirodon对人工河水中不同形态的积累特征,对比了鱼体(去鳃)和鱼鳃对铜吸收量的差异,并探讨了鱼对铜的吸收机理。研究结果表明,实验鱼鳃部和体内铜积累量均随水相游离铜浓度增高,暴露时间增长而增加,但鳃部积累浓度较鱼体其余部分高一个数量级,其从水相富集铜的速率显著高于鱼体。  相似文献   

3.
硫酸铜对蚕豆根尖细胞有丝分裂的影响   总被引:14,自引:0,他引:14  
以蚕豆根尖为材料,研究硫酸铜对蚕豆根尖细胞的遗传毒性效应。采用蚕豆根尖细胞的微核试验方法和染色体畸变试验方法,以不同浓度的硫酸铜为诱变剂,测定蚕豆根尖细胞的有丝分裂指数、微核率和染色体畸变率。结果表明:不同浓度的硫酸铜均能使蚕豆根尖细胞有丝分裂指数明显增加,即5个实验组的分裂指数均明显高于对照组(P<0.01或P<0.001);不同浓度的硫酸铜对蚕豆根尖细胞有丝分裂各期百分数的影响有异;能诱发较高频率的微核率,即在一定浓度范围内,其微核率随硫酸铜处理浓度的升高而增加,但随着硫酸铜浓度的进一步升高而呈下降趋势;硫酸铜还能诱导染色体产生多种类型的畸变,染色体畸变率随硫酸铜处理浓度的升高而增加,随着硫酸铜浓度的进一步升高而呈下降趋势,但均明显高于对照组(P<0.001)。结论是硫酸铜对蚕豆根尖细胞具有明显的遗传毒性效应。  相似文献   

4.
Copper (Cu) in higher concentration is toxic and results in various organ dysfunction. We report Cu concentration in liver, brain and kidney in the rat model following chronic exposure of oral copper sulphate at different subtoxic doses and correlate the tissue Cu concentrations with respective organ dysfunction. Fifty-four male wistar rats divided in 3 groups, the control group received saline water and the experimental group (Group-IIA and IIB) received oral copper sulphate in dose of 100 and 200 mg/kg Body Weight. At the end of 30 days, 60 days and 90 days of exposure, six rats were sacrificed from each group. The maximum peak force in grip strength, latency to fall in rotarod and percentage attention score in Y-maze were significantly reduced in the copper sulphate exposed rats compared to the controls at all time points and these were more marked in Group-IIB compared to Group-IIA. Cu concentration was significantly higher in liver, kidney and brain in the Group-II compared to the Group-I. The Cu concentration was highest in the liver (29 folds) followed by kidney (3 folds) and brain (1.5 folds). Serum ALT, AST and bilirubin correlated with liver Cu, BUN with kidney Cu, and grip strength, rotarod and Y-maze findings correlated with brain Cu level. In rats, chronic oral copper sulphate exposure at subtoxic level results in neurobehavioral abnormality and liver and kidney dysfunctions due to increased Cu concentration in the respective organs. Liver is the most vulnerable organ and copper toxicity increases with increasing dose and duration of exposure.  相似文献   

5.
In order to evaluate the effects of copper and atrazine on the stress response of the freshwater fish Prochilodus lineatus, juvenile fish were pre-exposed to copper (20 μg L(-1)) or atrazine (10 μg L(-1)) for 24 h and then submitted to air exposure for 3 min. Simultaneously fish kept in dechlorinated water for 24 h were subjected to air exposure and a non-stress group was not subjected to air stress or any contaminants. Animals were sampled immediately (t0) and after 1, 3 and 6 h of air exposure (t1, t3 and t6 respectively) for the analysis of plasma cortisol, glucose and Na(+), hepatic glycogen, branchial Na(+)/K(+)-ATPase (NKA), number of red blood cells per cubic millimeter of blood (RBC), hematocrit (Hct) and hemoglobin content (Hb). In fish pre-exposed to copper the stress response was inhibited, and at t1 and t3 both cortisol and glucose remained significantly lower compared to fish subjected to air stress only. In fish pre-exposed to atrazine there was no rise in cortisol, but there was an increase in plasma glucose, RBC, Hct and Hb at t0 and a return of these parameters to basal levels at t1, as they did not differ significantly in relation to non-stressed fish. Animals pre-exposed to either Cu or atrazine showed a significant reduction in NKA activity at t1 and t3, in relation to air stressed fish. These results clearly indicate that copper and atrazine impair cortisol stress response of P. lineatus and that fish subjected to a contaminant-induced stress, either by copper or atrazine, may not be able to respond to any additional stressors.  相似文献   

6.
The effects of cage fish farming on physico-chemical and bacteriological water quality in Lake Volta, Ghana, were investigated in 2013–2014. Farmed and unfarmed (control) areas of the lake were selected for monitoring. Nutrients, temperature, dissolved oxygen, conductivity, turbidity, pH, total coliforms, Pseudomonas and Vibrio spp. in the water were monitored monthly. Analyses of the water samples were carried out according to standard procedures. Physico-chemical quality of the water in both farm and control sites were within ranges typical of minimally impacted water and did not vary significantly between the two contrasting sites. The bacteriological analysis, however, revealed contamination of the lake water by fish farming. The bacterial counts at the farmed sites were significantly higher (p < 0.05) than those of the control sites, with figures at the farmed sites ranging from 132 to 1 708 cfu 100 ml?1 for total coliforms, 514 to 5 170 cfu 100 ml?1 Pseudomonas spp. and 14 to 516 cfu 100 ml?1 for Vibrio spp. The results suggested that cage fish farming has increased bacterial loads in the lake water, but has had minimal impact on its physico-chemical quality.  相似文献   

7.
This study was to determine the median lethal concentration (LC50) of copper to Javenese carp, Puntius gonionotus (Bleeker), and the immune response after the fish were exposed to sublethal levels of copper and challenged with formalin killed Aeromonas hydrophila. The LC50 of copper on P. gonionotus at 24, 48, 72, 96 and 120 h were estimated as 2.17, 0.91, 0.57, 0.53 and 0.42 mg l(-1), respectively. To determine the effect of copper on the immune system, fish were exposed for 66 days to 0.05, 0.10 and 0.15 mg Cu l(-1). After 56 days of initial exposure to copper, fish were challenged with 0.1 ml of 4.5 x 10(5) cfu ml(-1) formalin killed A. hydrophila and maintained in the same concentration of copper. After the challenge, the immune response was monitored for 2 weeks using haematological and serological assays. During the initial phase of exposure to copper, significant changes were noted in the white blood cell, lysozyme, potential killing activity, total plasma protein, total immunoglobulin and haematocrit levels between the control and treated fish. One week after challenge with A. hydrophila, there was a significant increase in the values of white blood cells, total protein and total immunoglobulin compared to the values before the challenge. However, these values were not significantly different (P>0.05) between the control and the treated fish. In contrast, NBT and lysozyme assays exhibited a significant difference (P<0.05) in fish exposed to 0.10 mg Cu l(-1) (0.525 +/- 0.17; 24.42 +/- 3.35 x 10(2) micromg ml(-1)) and 0.15 mg Cu 1(-1) (0.536 +/- 0.19; 21.78 +/- 1.29 x 10(2) micromg ml(-1)) compared to the control (0.746 +/- 0.31; 30.73 +/- 5.42 x 10(2) micromg ml(-1)) after the bacterial challenge (day 61). There was however no significant difference (P>0.05) in NBT and lysozyme levels in fish exposed to lower level of copper (0.05 mg Cu l(-1)), suggesting the absence of immunosuppressive effects at lower level of exposure.  相似文献   

8.
Washed cell suspensions ofHyphomicrobium spp. were able to oxidize methanol, formaldehyde and formate. This suggested that enzymes for the oxidation of these compounds were present. The pathway of the oxidation of methanol to carbon dioxide and water has been investigated using cell-free extracts. An ammonium-ion-activated, phenazine methosulphate-linked methanol dehydrogenase was detected. This enzyme has a dual substrate specificity for normal primary alcohols and formaldehyde. It has a high pH optimum for activity of 9.5. The pathway is completed by an NAD-linked formate dehydrogenase. This enzyme is inhibited by low concentrations of potassium cyanide, copper sulphate and hypophosphite.  相似文献   

9.
We investigated a harmful algal bloom (HAB) associated with the massive fish kills in Johor Strait, Malaysia, which recurred a year after the first incident in 2014. This incident has urged for the need to have a rapid and precise method in HAB monitoring. In this study, we develop a SYBR green‐based real‐time PCR (qPCR) to detect the culpable dinoflagellate species, Karlodinium australe. Species‐specific qPCR primers were designed in the gene region of the second internal transcribed spacer of the ribosomal RNA gene (rDNA). The species specificity of the primers designed was evaluated by screening on the non‐target species (Karlodinium veneficum, Takayama spp., and Karenia spp.) and no cross‐detection was observed. The extractable gene copies per cell of K. australe determined in this study were 19 998 ± 505 (P < 0.0001). Estimation of cell densities by qPCR in the experimental spiked samples showed high correlation with data determined microscopically (R2 = 0.93). Using the qPCR assay developed in this study, we successfully detected the 2015 bloom species as K. australe. Single‐cell PCR and rDNA sequencing from the field samples further confirmed the finding. With the sensitivity as low as five cells, the qPCR assay developed in this study could effectively and rapidly detect cells of K. australe in the environmental samples for monitoring purpose.  相似文献   

10.
Abstract

Sublethal concentrations of copper in water cause the degeneration of olfactory receptors in rainbow trout (Oncorhynchus mykiss). Receptor cell loss has been correlated to the loss of olfaction in fish and may cause difficulties in olfactory mediated behaviors such as migration. This study investigated the effects of three levels of copper (100, 75 and 50 mg L?1) on the olfactory epithelium of rainbow trout. Twenty fish randomly allocated between three exposure groups and one control were exposed for 24 hours under static renewal conditions. Light and scanning electron microscopic observations of olfactory tissue were taken to determine the extent of degeneration of receptors. In addition, levels of copper and zinc in the brain tissues were analyzed to determine if the olfactory route was a significant route of copper exposure and transfer to fish brain tissue. Results indicate that degeneration of receptors is related to the concentration of copper. Levels of copper in brain were found to be below detection of the instrument. Levels of zinc were extremely variable ranging from 52 to 132 ng zinc g?1 brain tissue.  相似文献   

11.
THE TOXICITY OF ZINC SULPHATE TO RAINBOW TROUT   总被引:4,自引:0,他引:4  
The toxicity of zinc sulphate to rainbow trout ( Salmo gairdnerii Richardson) has been investigated in waters of different chemical and physical properties.
Zinc sulphate was less toxic to rainbow trout in hard water than in soft water; when the log concentration of zinc was plotted against log median period of survival of the fish the dose response curve was linear in a very soft water, and curvilinear in a hard water, approaching an apparent threshold concentration. Solutions of zinc sulphate containing calcium chloride were less toxic than those containing an equivalent concentration of calcium as bicarbonate.
An increase in temperature decreased the survival time of rainbow trout in solutions of zinc sulphate in a hard water, but the threshold concentration was not appreciably affected by changes in temperature.
A reduction in the dissolved oxygen concentration of the water increased the toxicity of zinc sulphate, but the effect was reduced when the fish were previously acclimatized to the lower oxygen concentration of the test.
The cause of death of fish in solutions of zinc sulphate was not by the precipitation of mucus on the gills but probably by damage to the gill epithelium.  相似文献   

12.
The in vitro effects of cadmium, copper, lead and zinc, and various cadmium compounds (chloride, sulphate and nitrate) on common carp (Cyprinus carpio) lymphocyte viability and phagocyte activity, were evaluated. The percentage of dead lymphocytes was determined after Trypan blue staining, and phagocyte activity was measured by using the nitroblue tetrazolium (NBT) reduction test. Lead was the most toxic to lymphocytes--the maximum mortality exceeded 30%, and was significantly higher at 1 microM of lead, compared to the control. The maximum mortality caused by cadmium was below 10%, but was significantly elevated with 5 microM or more of cadmium. Zinc induced lymphocyte mortality from 10 microM, whilst no effect was observed with copper. The incubation of full blood with the three cadmium compounds (at 5mg/l of cadmium) showed that cadmium nitrate and cadmium sulphate were more toxic (over 35% and 25% mortality, respectively) than cadmium chloride (about 15% mortality). This was confirmed by the results of tests on isolated cells--1mg/l of cadmium as nitrate and sulphate increased lymphocyte mortality compared to the control and cadmium chloride. Phagocytic activity was less sensitive to heavy metals than was lymphocyte viability. It was significantly reduced following exposure to 50 microM and 100 microM cadmium, and 100 microM zinc, but no effects were observed with either lead or copper.  相似文献   

13.
It has been hypothesized that concentrations of mercury ([Hg]) in fish increase with increasing acidic deposition. Our investigation suggests that this hypothesis is false for three species of fish from Ontario lakes. Across Ontario, Canada, slightly lower average [Hg] in Lake Trout, Walleye and Northern Pike (controlled for fish length) were associated with regions receiving progressively greater rates of sulphate deposition. We also observed that lake concentration of dissolved organic carbon ([DOC]), not pH, alkalinity or sulphate ion concentration, was the strongest correlate of this residual fish Hg contamination. Path analysis also determined a net reduction in fish [Hg] at higher rates of sulphate deposition. However, this analysis indicated a far more complex web of interactions between sulphate deposition, water chemistry and fish [Hg] than simple correlation analysis could define. Path analysis provided empirical evidence in support of several previously described mechanisms interacting simultaneously to influence fish Hg accumulation. Based on these empirical observations, an alternate hypothesis is proposed whereby increasing sulphate deposition results in lower [DOC] levels in lakes which, in turn, cause a decline in fish Hg contamination.  相似文献   

14.
Copper fungicides and mycoinsecticides based on entomopathogenic fungi Beauveria spp. are the most common pesticides used in organic crop production systems. The in vitro effects of the copper fungicides copper oxide, copper hydroxide, copper oxychloride, copper sulphate, dicopper chloride trihydroxide and tribasic copper sulphate were investigated for mycelial growth, sporulation and conidial germination of the ATCC 74040 commercial strain of Beauveria bassiana. Mycelial growth was evaluated on potato dextrose agar plates with 100%, 75%, 50%, 25%, 12.5%, 6.25% and 0% of the recommended application rates of each fungicide at 15 and 25°C. Sporulation and conidial germination were determined at the recommended field doses of each fungicide at 25°C. All copper fungicides had fungistatic or fungicidal effects on B. bassiana that varied according to the dose. Only in two cases, copper oxide at 15°C and copper hydroxide at 25°C, at the lowest concentration of 6.5%, was mycelial growth not statistically significantly inhibited. Inhibition of mycelial growth depended both on the fungicide and its concentration, and partly on temperature. Both sporulation and conidial germination of B. bassiana were significantly inhibited by all fungicides. All fungicides inhibited the sporulation in a similar way (99.8%–100%). With the exception of copper oxychloride (inhibition, 13.6%), the other fungicides showed high detrimental effects on conidial germination (inhibition, 91.7%–100%). The fungus was strongly affected by some fungicides even at the lowest doses. The biological index used for the B. bassiana with copper fungicides ranged from 0.6 (copper sulphate) to 18.1 (copper oxychloride). Therefore, the tested fungicides were classified into the upper half of the highly toxic (T) category and are considered incompatible with the entomopathogenic fungus B. bassiana strain ATCC 74040 under in vivo experimental conditions. These results need to be further verified in vitro under both greenhouse and open-field conditions.  相似文献   

15.
1. Extraction of coalbed natural gas (CBNG) often results in disposal of large quantities of CBNG product water, which may affect aquatic ecosystems. We evaluated the effects of CBNG development on fish assemblages in tributary streams of the Powder and Tongue rivers. We used treatment and control, impact versus reference sites comparisons, surveys of CBNG product‐water streams and in situ fish survival approaches to determine if CBNG development affected fish assemblages. 2. Several of our results suggested that CBNG development did not affect fish assemblages. Species richness and index of biotic integrity (IBI) scores were similar in streams with and streams without CBNG development, and overall biotic integrity was not related to the number or density of CBNG wells. Fish occurred in one stream that was composed largely or entirely of CBNG product water. Sentinel fish survived in cages at treatment sites where no or few fish were captured, suggesting that factors such as lack of stream connectivity rather than water quality limited fish abundance at these sites. Fish species richness did not differ significantly from 1994 to 2006 in comparisons of CBNG‐developed and undeveloped streams. Biotic integrity declined from 1994 to 2006; however, declines occurred at both impact and reference sites, possibly because of long‐term drought. 3. Some evidence suggested that CBNG development negatively affected fish assemblages, or may do so over time. Specific conductivity was on average higher in treatment streams and was negatively related to biotic integrity. Four IBI species richness metrics were negatively correlated with the number or density of CBNG wells in the catchment above sampling sites. Bicarbonate, one of the primary ions in product water, was significantly higher in developed streams and may have limited abundance of longnose dace (Rhinichthys cataractae). Total dissolved solids, alkalinity, magnesium and sulphate were significantly higher in developed streams. 4. Biological monitoring conducted before the development of CBNG, and continuing through the life of development and reclamation, together with data on the quantity, quality and fate of CBNG product water will allow robust assessment of potential effects of future CBNG development worldwide.  相似文献   

16.
The use of surfactants in households and industries is inevitable and so is their discharge into the environment, especially into the water bodies as effluents. Being surface-active agents, their utilization is mostly seen in soaps, detergents, personal care products, emulsifiers, wetting agents, etc. Anionic surfactants are the most used class. These surfactants are responsible for the foam and froth in the water bodies and cause potential adverse effects to both biotic and abiotic components of the ecosystem. Surfactants are capable of penetrating the cell membrane and thus cause toxicity to living organisms. Accumulation of these compounds has been known to cause significant gill damage and loss of sight in fish. Alteration of physiological and biochemical parameters of water decreases the amount of dissolved oxygen and thus affecting the entire ecosystem. Microbes utilizing surfactants as substrates for energy form the basis of the biodegradation of these compounds. The main organisms for surfactant biodegradation, both in sewage and natural waters, are bacteria. Several Pseudomonas and Bacillus spp. have shown efficient degradation of anionic surfactants namely: sodium dodecyl sulphate (SDS), linear alkylbenzene sulphonate (LAS), sodium dodecylbenzenesulphonate (SDBS). Also, several microbial consortia constituting Alcaligenes spp., Citrobacter spp., etc. have shown efficacy in the degradation of surfactants. The biodegradation efficiency studies of these microbes/microbial consortia would be of immense help in formulating better solutions for the bioremediation of surfactants and help to reduce their potential environmental hazards.  相似文献   

17.
The present study was conducted to extend the understanding of the combined physiological effects of different food rations in combination with sublethal levels of copper in common carp (Cyprinus carpio). Fish acclimated to low (0.5% body weight) and high (5% body weight) food rations were exposed to 1 microM copper for a period of 28 days and kept for a further 14 days in copper free water to examine their recovery. Measurements of oxygen consumption, ammonia excretion and ammonia accumulation in plasma and muscle were done at various time intervals during the experimental period. Overall, oxygen consumption and ammonia excretion rates were significantly affected by food ration in both copper free and copper exposed fish. Additional challenges, such as copper exposure and/or exercise, significantly increased plasma and muscle ammonia in the fish fed a high food ration. Muscle ammonia levels in general responded slower (first increase after 72 h) and recovered within 2 weeks of exposure. There was a significant correlation between plasma ammonia levels, muscle ammonia levels and ammonia excretion rates. Influence of copper in terms of ammonia excretion and plasma ammonia accumulation was observed in high ration fish but low ration fish remained unaffected. This clearly indicates that ammonia metabolism was significantly influenced by copper in this group of fish showing that during unfavourable environmental conditions a high amount of food supply may turn deleterious to fish.  相似文献   

18.
Integrated fish farming combines livestock production with fish farming. Animal manure is shed directly into a fish pond as fertilizer and supports the growth of photosynthetic organisms. The livestock, mainly chickens and pigs, is often fed feed containing growth promoters. In this study we investigated the impact of integrated fish farming on the levels of antimicrobial-resistant bacteria in a pond environment. One integrated broiler chicken-fish farm was studied for 2 months immediately after the start of a new fish production cycle. A significant increase over time in the resistance to six different antimicrobials was found for the indicator organism Acinetobacter spp. isolated from composite water-sediment samples. The initial resistance levels prior to the new production cycle were 1 to 5%. After 2 months the levels of resistance to oxytetracycline and sulfamethoxazole reached 100%, and the levels of resistance to ciprofloxacin were more than 80%. The long-term effects of resistance on integrated farming were studied on seven additional farms. The resistance levels were particularly high among Enterococcus spp. and were also high among Acinetobacter spp. isolated from water-sediment samples compared to the resistance levels at four control farms. In conclusion, integrated fish farming seems to favor antimicrobial-resistant bacteria in the pond environment. This could be attributed to the selective pressure of antimicrobials in the pond environment and/or to the introduction of antimicrobial-resistant bacteria from animal manure. Potential risks to human health were not addressed in this study and remain to be elucidated.  相似文献   

19.
The effect of sublethal exposure to copper on the diel activity of sea catfish, Arius felis, was examined after 72 h static exposure to copper (0.0, 0.05, 0.1, or 0.2 mg l–1 ). The locomotor behavior of 28 individual fish was electronically monitored in a 16-compartment rosette tank. Activity was quantified by the number of entries into compartments per hour. Controls and copper-exposed fish (0.05 mg l–1) behaved similarly after treatment and displayed no significant effects of handling or copper exposure on diel activity. However, fish exposed to 0.1 and 0.2 mg l–1 copper were hyperactive immediately following exposure; these fish had significantly greater numbers of entries into compartments per hour for entire 24-h monitoring periods (P < 0.01) and for the 12 h of photophase (P < 0.001) and of scotophase (P < 0.001) than fish in the other two experimental groups. The normal diel activity cycle was abolished. Additionally, exposure of fish to copper at 0.1 and 0.2 mg l–1 resulted in significantly less variability in activity (P < 0.05) compared to control fish and those exposed to 0.05 mg Cu l–1.  相似文献   

20.
We investigated the effect of copper on liver key enzymes of the anaerobic glucose metabolism (hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK; lactate dehydrogenase, LDH) as well as of the pentose pathway (glycose-6-phosphate dehydrogenase, G6PDH) from the fish Prochilodus lineatus. The fish were acclimated at either 20 degrees C or 30 degrees C at pH 7.0, transferred to water at pH 4.5 or 8.0, and exposed to 96 h-CL(50) copper concentrations. Copper accumulation in liver was higher in fish acclimated at 20 degrees C and maintained in water pH 8.0. Three-way analysis of variance revealed a significant effect of temperature on all enzymes, a significant effect of pH on all enzymes except for PK, and a significant effect of copper on only PFK, and LDH in pH 4.5 at 20 degrees C and, at 30 degrees C, on PFK and PK at pH 4.5 and 8.0, HK at pH 4.5 and G6PDH at pH 8.0. There were significant interactions between treatments for many enzymes. These changes suggest that the activity of enzymes in question is modified by a change in ambient water. At least at 30 degrees C, the overall reduction in the glycolytic enzyme activities of copper-exposed fish seems to reduce energy availability via glucose metabolism, thereby contributing to enhance copper toxic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号