首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Apoptotic nuclear morphological change without DNA fragmentation.   总被引:8,自引:0,他引:8  
Apoptosis is characterized morphologically by condensation and fragmentation of nuclei and cells and biochemically by fragmentation of chromosomal DNA into nucleosomal units [1]. CAD, also known as CPAN or DFF-40, is a DNase that can be activated by caspases [2] [3] [4] [5] [6]. CAD is complexed with its inhibitor, ICAD, in growing, non-apoptotic cells [2] [7]. Caspases that are activated by apoptotic stimuli [8] cleave ICAD. CAD, thus released from ICAD, digests chromosomal DNA into nucleosomal units [2] [3]. Here, we examine whether nuclear morphological changes induced by apoptotic stimuli are caused by the degradation of chromosomal DNA. Human T-cell lymphoma Jurkat cells, as well as their transformants expressing caspase-resistant ICAD, were treated with staurosporine. The chromosomal DNA in Jurkat cells underwent fragmentation into nucleosomal units, which was preceded by large-scale chromatin fragmentation (50-200 kb). The chromosomal DNA in cells expressing caspase-resistant ICAD remained intact after treatment with staurosporine but their chromatin condensed as found in parental Jurkat cells. These results indicate that large-scale chromatin fragmentation and nucleosomal DNA fragmentation are caused by an ICAD-inhibitable DNase, most probably CAD, whereas chromatin condensation during apoptosis is controlled, at least in part, independently from the degradation of chromosomal DNA.  相似文献   

3.
Chromatin condensation and oligonucleosomal DNA fragmentation are the nuclear hallmarks of apoptosis. A proteolytic fragment of the apoptotic chromatin condensation inducer in the nucleus (Acinus), which is generated by caspase cleavage, has been implicated in mediating apoptotic chromatin condensation prior to DNA fragmentation. Acinus is also involved in mRNA splicing and a component of the apoptosis and splicing-associated protein (ASAP) complex. To study the role of Acinus for apoptotic nuclear alterations, we generated stable cell lines in which Acinus isoforms were knocked down by inducible and reversible RNA interference. We show that Acinus is not required for nuclear localization and interaction of the other ASAP subunits SAP18 and RNPS1; however, knockdown of Acinus leads to a reduction in cell growth. Most strikingly, down-regulation of Acinus did not inhibit apoptotic chromatin condensation either in intact cells or in a cell-free system. In contrast, although apoptosis proceeds rapidly, analysis of nuclear DNA from apoptotic Acinus knockdown cells shows inhibition of oligonucleosomal DNA fragmentation. Our results therefore suggest that Acinus is not involved in DNA condensation but rather point to a contribution of Acinus in internucleosomal DNA cleavage during programmed cell death.  相似文献   

4.
The phosphorylation of histone H2AX at serine 139 is one of the earliest responses of mammalian cells to ionizing radiation-induced DNA breaks. DNA breaks are also generated during the terminal stages of apoptosis when chromosomal DNA is cleaved into oligonucleosomal pieces. Apoptotic DNA fragmentation and the consequent chromatin condensation are important for efficient clearing of genomic DNA and nucleosomes and for protecting the organism from auto-immmunization and oncogenic transformation. In this study, we demonstrate that H2AX is phosphorylated during apoptotic DNA fragmentation in mouse, Chinese hamster ovary, and human cells. We have previously shown that ataxia telangiectasia mutated kinase (ATM) is primarily responsible for H2AX phosphorylation in murine cells in response to ionizing radiation. Interestingly, we find here that DNA-dependent protein kinase (DNA-PK) is solely responsible for H2AX phosphorylation during apoptosis while ATM is dispensable for the process. Moreover, the kinase activity of DNA-PKcs (catalytic subunit of DNA-PK) is specifically required for the induction of gammaH2AX. We further show that DNA-PKcs is robustly activated in apoptotic cells, as evidenced by autophosphorylation at serine 2056, before it is inactivated by cleavage. In contrast, ATM is degraded well before DNA fragmentation and gammaH2AX induction resulting in the predominance of DNA-PK during the later stages of apoptosis. Finally, we show that DNA-PKcs autophosphorylation and gammaH2AX induction occur only in apoptotic nuclei with characteristic chromatin condensation but not in non-apoptotic nuclei from the same culture establishing the most direct link between DNA fragmentation, DNA-PKcs activation, and H2AX phosphorylation. It is well established that DNA-PK is inactivated by cleavage late in apoptosis in order to forestall DNA repair. Our results demonstrate, for the first time, that DNA-PK is actually activated in late apoptotic cells and is able to initiate an early step in the DNA-damage response, namely H2AX phosphorylation, before it is inactivated by proteolysis.  相似文献   

5.
Apoptosis of mouse liver nuclei induced in the cytosol of carrot cells   总被引:10,自引:0,他引:10  
Zhao Y  Jiang ZF  Sun YL  Zhai ZH 《FEBS letters》1999,448(1):197-200
We report here the apoptosis of mouse liver nuclei induced in the cytosol of carrot cells by cytochrome c. Several typical characteristics of apoptosis, such as chromatin condensation, margination and apoptotic bodies, were detected. The result of DNA gel electrophoresis showed that DNA was degraded into nucleosomal fragments. The terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end labelling procedure was also performed to detect the breakage of 3'-OH ends of a DNA strand. Furthermore, we found that nuclear lamins were degraded from 88 kDa and 66 kDa to 37 kDa and 47 kDa fragments. The DNA fragmentation could be inhibited by AC-DEVD-CHO and AC-YVAD-CHO. The results indicate that the apoptosis in plant cells may share some similar pathways to apoptosis in animal cells.  相似文献   

6.
Chromatin condensation paralleled by DNA fragmentation is one of the most important criteria which are used to identify apoptotic cells. However, comparable changes are also observed in interphase nuclei which have been treated with cell extracts from mitotic cells. In this respect it is known that in mitosis, the lamina structure is broken down as a result of lamin solubilization and it is possible that a similar process is happening in apoptotic cells. The experiments described in this study have used confluent cultures of an embryonic fibroblast cell line which can be induced to undergo either apoptosis at low serum conditions or mitosis. Solubilization of lamin A+B was analyzed by immunoblotting and indirect immunofluorescence. These studies showed that in mitotic cells lamina breakdown is accompanied by lamin solubilization. In apoptotic cells, a small amount of lamin is solubilized before the onset of apoptosis, thereafter, chromatin condensation is accompanied by degradation of lamin A+B to a 46-kD fragment. Analysis of cellular lysates by probing blots with anti- PSTAIR followed by anti-phosphotyrosine showed that in contrast to mitosis, dephosphorylation on tyrosine residues did not occur in apoptotic cells. At all timepoints after the onset of apoptosis there was no significant increase in the activation of p34cdc2 as determined in the histone H1 kinase assay. Coinduction of apoptosis and mitosis after release of cells from aphidicolin block showed that apoptosis could be induced in parallel with S-phase. The sudden breakdown of chromatin structure may be the result of detachment of the chromatin loops from their anchorage at the nuclear matrix, as bands of 50 kbp and corresponding multimers were detectable by field inversion gel electrophoresis (FIGE). In apoptotic cells all of the DNA was fragmented, but only 14% of the DNA was smaller than 50 kbp. DNA strand breaks were detected at the periphery of the condensed chromatin by in situ tailing (ISTAIL). Chromatin condensation during apoptosis appears to be due to a rapid proteolysis of nuclear matrix proteins which does not involve the p34cdc2 kinase.  相似文献   

7.
Characteristic steps during cellular apoptosis are the induction of chromatin condensation and subsequent DNA fragmentation, finally leading to the formation of oligomers of nucleosomes. We have examined the kinetics and local distribution of this nucleosomal fragmentation within different genomic regions. For the induction of apoptosis, HL60 cells were treated with the water-soluble camptothecin derivative topotecan (a topoisomerase I inhibitor). The genomic origin of the fragments was analysed by Southern blot hybridisation of the cleaved DNA. In these experiments we observed similar hybridisation patterns of the fragmented DNA, indicating a random and synchronous cleavage of the nuclear chromatin. However, hybridisation with a telomeric probe revealed that, in contrast to the other analysed genomic regions, the telomeric chromatin was not cleaved into nucleosomal fragments despite our observation that the telomeric DNA in HL60 cells is organised in nucleosomes. We determined just a minor shortening of the telomeric repeats early during apoptosis. These observations suggest that telomeric chromatin is excluded from internucleosomal cleavage during apoptosis.  相似文献   

8.
Ameloblasts responsible for tooth enamel formation are classified into two different phases: secretion and maturation. At the transition between these secretion and maturation stages, a considerable number of cells die. In this study, we examined the morphology of degenerating ameloblasts by conventional electron microscopy, and DNA cleavage in degenerating ameloblast nuclei by the in situ terminal transferase assay. The results suggest that apoptosis (programmed cell death) in ameloblasts, including DNA ligation is induced at the transitional stage. The nuclear fragments, chromatin condensation and DNA relocation in apoptotic nuclei were examined quantitatively by post-embedding anti-DNA immunogold electron microscopy and the in situ terminal transferase assay combined with electron microscopy. Numerical analysis revealed that immunogold labeling density in the condensed chromatin of apoptotic nuclei was comparable on the average to that in the perinuclear heterochromatin of normal nuclei, and that individual apoptotic nuclear fragments exhibited highly variable gold particle density, from fragments with lower density to that of normal heterochromatin, to fragments with densities twice as high as that of normal heterochromatin. The in situ terminal transferase assay combined with electron microscopy detected DNA ends exposed by ultrathin sectioning as well as DNA cleavage by a putative endonuclease. In conclusion, the state of the DNA, including its ligation and degeneration, changes gradually during chromatin condensation and nuclear fragmentation of apoptosis.  相似文献   

9.
为揭示褐飞虱Niloparvata lugens Stl若虫在发育过程中中肠的凋亡细胞,使用末端脱氧核苷酸转移酶介导的dUTP-生物素断端标记法(TUNEL)进行中肠组织切片检测,结果表明,1~5龄若虫中肠分别存在2%~5%的凋亡细胞。利用4′,6-二脒基-2-苯基吲哚二盐酸(DAPI)染色法检测表明,存在Ⅰ,Ⅱa和Ⅱb期凋亡的细胞核,其特征包括染色体浓缩、边缘化及细胞核碎裂。透射电子显微镜检测结果表明,早期凋亡的细胞呈现染色质浓缩、边缘化特征,晚期凋亡的细胞出现细胞核碎裂、形成凋亡小体及细胞质空泡化等。本研究揭示了在正常发育过程中褐飞虱若虫中肠有少量的细胞发生了凋亡。通过人工干预的方式调控中肠细胞的凋亡进程有可能使之成为防治该水稻害虫的新靶标。  相似文献   

10.
Caspase-activated DNase (CAD) is a major apoptotic nuclease, responsible for DNA fragmentation and chromatin condensation during apoptosis. CAD is normally activated in apoptosis as a result of caspase cleavage of its inhibitory chaperone ICAD. Other aspects of CAD regulation are poorly understood. In particular, it has been unclear whether direct CAD activation in non-apoptotic living cells can trigger cell death. Taking advantage of the auxin-inducible degron (AID) system, we have developed a suicide system with which ICAD is rapidly degraded in living cells in response to the plant hormone auxin. Our studies demonstrate that rapid ICAD depletion is sufficient to activate CAD and induce cell death in DT40 and yeast cells. In the vertebrate cells, ectopic CAD activation triggered caspase activation and subsequent hallmarks of caspase-dependent apoptotic changes, including phosphatidylserine exposure and nuclear fragmentation. These observations not only suggest that CAD activation drives apoptosis through a positive feedback loop, but also identify a unique suicide system that can be used for controlling gene-modified organisms.  相似文献   

11.
Programmed cell death (PCD) plays a vital role in plant development and is involved in defence mechanisms against biotic and abiotic stresses. Different forms of PCD have been described in plants on the basis of the cell organelle first involved. In sycamore ( Acer pseudoplatanus L.) cultured cells, the phytotoxin fusicoccin (FC) induces cell death. However, only a fraction of the dead cells shows the typical hallmarks of animal apoptosis, including cell shrinkage, chromatin condensation, DNA fragmentation and release of cytochrome c from the mitochondrion. In this work, we show that the scavenging of nitric oxide (NO), produced in the presence of FC, by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and rutin inhibits cell death without affecting DNA fragmentation and cytochrome c release. In addition, we show that FC induces a massive depolymerization of actin filaments that is prevented by the NO scavengers. Finally, the addition of actin-depolymerizing drugs induces PCD in control cells and overcomes the inhibiting effect of cPTIO on FC-induced cell death. Vice versa, the addition of actin-stabilizing drugs to FC-treated cells partially inhibits the phytotoxin-induced PCD. These results suggest that besides an apoptotic-like form of PCD involving the release of cytochrome c , FC induces at least another form of cell death, likely mediated by NO and independent of cytochrome c release, and they make it tempting to speculate that changes in actin cytoskeleton are involved in this form of PCD.  相似文献   

12.
The DNA fragmentation factor 45 (DFF45) is a subunit of a heterodimeric DNase complex critical for the induction of DNA fragmentation in vitro. To understand the in vivo role of DFF45 in programmed cell death, we measured the expression of DFF45 during mouse development and compared DNA fragmentation and viability of DFF45-deficient cells with wild-type control cells after activation of apoptosis. We found that DFF45 is ubiquitously expressed throughout mouse development. Moreover, DFF45-deficient thymocytes are resistant to DNA fragmentation with in vivo dexamethasone treatment. Furthermore, primary thymocytes from DFF45 mutant mice are also more resistant to apoptosis than wild-type control cells on exposure to several apoptotic stimuli. Dying DFF45-deficient thymocytes exhibit different morphology than wild-type control cells in that they show reduced degree of chromatin condensation, absent nuclear fragmentation, intranuclear cytoplasmic invagination, and striking nuclear chromatin conglutination after release from disintegrating cells. These results indicate that DFF45 is essential during normal apoptosis.  相似文献   

13.
CD45 is a type I transmembrane molecule with phosphatase activity which comprises up to 10% of the cell surface area in nucleated haematopoietic cells. We have previously demonstrated the absence of nuclear apoptosis in CD45-negative T cells after chemical-induced apoptosis. The aim of this study was to characterize the role of CD45 in nuclear apoptosis. In contrast to wild type CD45-positive T cells, the CD45-deficient T cell lines are resistant to the induction of DNA fragmentation and chromatin condensation following tributyltin (TBT) or H2O2 exposure, but not to cycloheximide-induced apoptosis. CD45 transfection in deficient cell lines led to the restoration of chromatin condensation and DNA fragmentation following TBT exposure. In both CD45-positive and negative T cell lines, TBT exposure mediates intracellular calcium mobilization, caspase-3 activation and DFF45 cleavage. Moreover, DNA fragmentation was also induced by TBT in cells deficient in expression of p56lck, ZAP-70 and SHP-1. Subcellular partitioning showed a decrease in nuclear localisation of caspase-3 and DFF40. Together, these results demonstrate for the first time, that CD45 expression plays a key role in internucleosomal DNA fragmentation and chromatin condensation processes during apoptosis. CD45 activity or its substrates’ activity, appears to be located downstream of caspase-3 activation and plays a role in retention of DFF40 in the nucleus. Philippe Desharnais and Geneviève Dupéré-Minier have contributed equally to this work.  相似文献   

14.
The determination of whether a cell dies by apoptosis as opposed to necrosis is usually best made on the basis of distinct structural changes in the chromatin. These changes include extensive condensation of the chromatin and DNA fragmentation. We have shown that the cytotoxic drug bleomycin (BLM) is able to cleave the DNA between the nucleosomes when it enters into the cell. If sufficient amounts of BLM are internalized, the nuclear morphological changes characteristic of apoptosis are detected. In this work, we describe the nuclear changes that occurred after DNA fragmentation as a function of the number of DNA double-strand breaks generated per cell and of the time after their generation. Our results show that DNA fragmentation and degradation of higher-order DNA structure were directly responsible for the nuclear morphological changes associated with apoptosis. During apoptosis reduced fluorescence with respect to the G0/G1 cell cycle region (the sub-G1 region) is often detected if fixed cells from cultures undergoing apoptosis are analyzed by flow cytometry. We demonstrate here that, depending on the extent of the DNA fragmentation and on ulterior changes in chromatin structure, the content of the fluorescent sub-G1 region can be either soluble pieces of DNA or apoptotic bodies or cells depleted in the DNA content by partial loss of fragmented DNA dissolved in the washing media and/or by the release of apoptotic bodies.  相似文献   

15.
DNA degradation during apoptotic execution generally occurs at two levels: early as high molecular weight (HMW) fragments and later on as oligonucleosomal fragments. Two nucleases, CAD/CPAN/DFF40 and endonuclease G, can digest nuclear chromatin to produce the oligonucleosomal fragments, and it has been suggested that CAD might be responsible for HMW DNA cleavage. To more clearly define the role of CAD in nuclear disassembly, we have generated CAD(-/-) sublines of chicken DT40 cells in which the entire CAD open reading frame has been deleted. These cells grow normally and undergo apoptosis with kinetics essentially identical to wild type cells. However, they fail to undergo detectable oligonucleosomal fragmentation, proving that CAD is essential for this stage of DNA cleavage, at least in DT40 cells. Other aspects of nuclear disassembly, including HMW DNA cleavage and early stage apoptotic chromatin condensation against the nuclear periphery proceed normally in the absence of CAD. However, the final stages of chromatin condensation and nuclear fragmentation do not occur. Our results demonstrate that CAD is required for complete disassembly of the nucleus during apoptosis and reveal the existence of one or more as yet unidentified second factors responsible for HMW DNA cleavage and the early stages of apoptotic chromatin condensation.  相似文献   

16.
Fluorescence staining with acridine orange (AO) and ethidium bromide (EB) showed that nuclei of cortex root cells of 1-aminocyclopropane-1-carboxylic acid (ACC)-treated Vicia faba ssp. minor seedlings differed in color. Measurement of resultant fluorescence intensity (RFI) showed that it increased when the color of nuclear chromatin was changed from green to red, indicating that EB moved to the nuclei via the cell membrane which lost its integrity and stained nuclei red. AO/EB staining showed that changes in color of the nuclear chromatin were accompanied by DNA condensation, nuclei fragmentation, and chromatin degradation which were also shown after 4,6-diamidino-2-phenylindol staining. These results indicate that ACC induced programmed cell death. The increasing values of RFI together with the corresponding morphological changes of nuclear chromatin were the basis to prepare the standard curve; cells with green unchanged nuclear chromatin were alive while those with dark orange and bright red nuclei were dead. The cells with nuclei with green–yellow, yellow–orange, and bright orange chromatin with or without their condensation and fragmentation chromatin were dying. The prepared curve has became the basis to draw up the digital method for detection and determination of the number of living, dying, and dead cells in an in planta system and revealed that ACC induced death in about 20% of root cortex cells. This process was accompanied by increase in ion leakage, shortening of cells and whole roots, as well as by increase in weight and width of the apical part of roots and appearance of few aerenchymatic spaces while not by internucleosomal DNA degradation.  相似文献   

17.
A Rasola  D Farahi Far  P Hofman  B Rossi 《FASEB journal》1999,13(13):1711-1723
The heterodimeric DNA fragmentation factor (DFF) is responsible for DNA degradation into nucleosomal units during apoptosis. This process needs the caspase-dependent release of ICAD/DFF-45, the inhibitory subunit of DFF. Here we report that triggering apoptosis via a hyperosmotic shock in hematopoietic cells causes the appearance of mitochondrial and cytosolic alterations, activation of caspases, chromatin condensation, nuclear disruption, and DNA fragmentation. However, oligonucleosomal but not high molecular weight (50-150 kb) DNA cleavage is abolished if Cl(-) efflux is prevented by using NaCl to raise extracellular osmolarity or by Cl(-) channel blockers, even when apoptosis is initiated by other agents (staurosporine, anti-Fas antibody). In these conditions, all the apoptosis hallmarks investigated remain detectable, including the cleavage of ICAD/DFF-45. In vitro assays with lysates of cells in which Cl(-) efflux is blocked confirm the lack of internucleosomal DNA degradation. These findings establish that neither caspase activation nor ICAD/DFF-45 processing per se is sufficient to induce oligonucleosomal DNA fragmentation and that high molecular weight DNA degradation and chromatin condensation appear independently of it. Finally, they suggest that Cl(-) efflux is a necessary cofactor that intervenes specifically in the activation of the DFF endonuclease.  相似文献   

18.
19.
Apoptotic and non-apoptotic cell death in hormone-dependent glands   总被引:1,自引:0,他引:1  
The proliferation of cells and cell death are involved in the maintenance of appropriate tissue homeostasis. In the present study, two different mechanisms of cell death were identified in the prostate and pituitary glands when morphological data, fragmentation of DNA, and TUNEL labelling of apoptotic nuclei were compared. Typical cell death by apoptosis was identified by morphological and molecular approaches in the prostate after orchidectomy. By contrast, neither DNA fragmentation nor TUNEL labelling were found in dead cells occurring in the pituitary gland after interruption of lactation. Regressing lactotrophs were characterised by condensation and disruption of the cytoplasmic matrix, but preserved intact nuclei until advanced stages of regression. Degenerating “dark” cells comparable to those described in the pituitary were also seen coexisting with typical apoptosis in the prostate epithelial lining of orchidectomised rats. Both forms of cell death could be clearly differentiated, because dark cells suffer severe alterations of cytoplasmic organelles while maintaining the integrity of the nucleus. In contrast, apoptotic cells present well-preserved cytoplasmic organelles, but grossly disrupted nuclei with fragmentation and condensation of chromatin.  相似文献   

20.
维甲酸诱导的人大肠癌细胞凋亡   总被引:10,自引:0,他引:10  
本研究应用光镜、电镜技术、DNA凝胶电泳、流式细胞术及末端脱氧核苷酰转移酶原位标记(TUNEL法),观察全反式维甲酸ATRA诱导的人大肠癌CCL229细胞凋亡特征。RA诱导CCL229细胞凋亡,光、电镜下观察到凋亡小体形成等典型的形态学改变,琼脂糖凝胶电泳上呈现特征性的DNA ladder,DNA直方图上显示亚二倍体峰。10-8mol/L-105mol/L范围内,RA诱导CCL229细胞凋亡表现出时间和剂量依赖性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号