首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil macro-invertebrates and rate of litter disappearance were studied in a ridge plot with moder (mor) humus and a bottom plot with mull humus on a slope in a temperate mixed deciduous forest in Kyoto, Japan (J). The results were compared with those from two German beech forests (G) representative of European deciduous forest mor and mull. Between-plot differences in biomass of total saprophagous animals was much smaller in J than in G, which is dominated by earthworms. Susceptibility to soil acidity and zoogeographical distribution of earthworms were suggested to be related to this situation. Biomass of soil macro-invertebrates and litter turnover rate were compared among J, G and three types of tropical rainforests in Malaysia (M) in relation to climatic conditions. Taking into account among-site differences in temperature and moisture, which affect microbial activity and in biomass of saprophagous macro-invertebrates especially earthworms, the following order of importance of soil macro-invertebrates in determining the rate of litter disappearance was suggested: G>J>M. Based on the comparison of biomass of earthworms among European deciduous forests, Japanese deciduous forests and tropical rainforests, as well as on the presence or absence of anecic earthworms in these forests, it was suggested that this ranking could be generalized to European deciduous forests > Japanese deciduous forests > tropical rainforests. It was pointed out that this order was the opposite of the gradient in evapotranspiration rate existing among these regions.  相似文献   

2.
An altitudinal transect was studied at the montane level in a spruce forest, in order to describe changes in humus form dynamics. Whatever the elevation, the periodicity of humus form changes is copied on forest dynamics. Spruce regeneration is restricted both in space and time to favourable micro-site conditions accompanying tree fall gaps. One of these conditions is a shift from moder to mull humus form. As a result, this forest ecosystem shows a space-time mosaic pattern. The recovery of mull humus form takes more time as elevation increases and thus the ratio mull:moder progressively decreases. Simultaneously, burrowing earthworms become scarce. Nevertheless mull humus form does not change basically at increased elevation. On the other hand, moder has little organic matter at the lower montane level. At the mid montane level, accumulation of holorganic faeces into OH horizon is maximum. A mor-moder (few faunal traces) is observed during tree growth phase at the upper montane level. Lack of nutrient availability was hypothesized to explain the observed shift from mull to moder or mor-moder during the phase of intense tree growth. An increased independancy between the building of a moder humus profile and the actual accumulation of organic matter was the main change occurring with elevation. The transition to the subalpine level may thus be defined as the highest elevation up to which the forest ecosystem is able to reverse the mor-building process produced by tree growth. The discoupling between primary producers, plant debris accumulation and decomposers observed in the subalpine spruce forest leads to a breaking point in the carrying capability of humus for spruce seedlings. At high elevation spruce seedlings are mainly observed on rotten wood.The influence of humus form dynamics upon forest sustainability was discussed. The lack of humus biological activity at higher elevation was found to be a reason for the weakness of the forest ecosystem faced to the bilberry heath. Forest sustainability depends both on mull and moder. It was observed that moder failed to recover after mull along the forest cycle and turned to mor in harsh climate conditions. Consequences of management practices on the issue of competition between forest and heath were also discussed.  相似文献   

3.
Humus profiles underneath the canopy of dominant tree species in two secondary semi-evergreen forest sites in Grande-Terre (Guadeloupe) were analysed with a micromorphological method. In the vertisol of a tree plantation, the humus formed was rather similar under all tree species being an eumull and essentially due to the activity of the endoanecic earthworm Polypheretima elongata. In a natural secondary forest located on a steep slope and associated with a rendzina soil (without endoanecic earthworms), the humus forms were described at lower, mid- and upper slope. In this forest, two particular humus forms were observed. At the middle slope, underneath the canopy of Pisonia subcordata L. that produces nitrogen-rich litter, a calcareous amphimull, characterised by an OH horizon made of millipede faecal pellets, was formed. In the upper slope, underneath the canopy of Bursera simaruba (L.) Sarg. that produces a litter rich in resins and aromatic compounds that are poorly consumed by soil animals, a dysmull with a thick root mat (OFRh horizon) developed. Other humus forms were intermediate. The formation of these humus forms is discussed.  相似文献   

4.
Ecological developments during Holocene age and high atmospheric depositions since industrialization have changed the N dynamics of temperate forest ecosystems. A number of different parameters are used to indicate whether the forests are N‐saturated or not, most common among them is the occurrence of nitrates in the seepage water below the rooting zone. The use of different definitions to describe N saturation implies that the N status of ecosystems is not always appropriately assessed. Data on N dynamics from 53 different German forests were used to classify various development states of forest ecosystems according to the forest ecosystem theory proposed by Ulrich for which N balances of input – (output plus plant N increment) were used. Those systems where N output equals N input minus plant N increment are described as (quasi‐) Steady State Type. Those forests where N output does not equal N input minus plant N increment as in a ‘transient state.’ Forests of the transient state may lose nitrogen from the soil (Degradation Type) or gain nitrogen [e.g., from atmospheric depositions (Accumulation Type)]. Forest ecosystems may occur in four different N states: (a) (quasi‐) Steady State Type with mull type humus, (b) Degradation Type with mull type humus, (c) Accumulation Type with moder type humus, and (d) (quasi‐) Steady State Type with moder type humus. Forests with the (quasi‐) steady state with mull type humus in the forest floor (n= 8) have high‐soil pH values, high N retention by plant increment, high N contents in the mineral soils, and have not undergone large changes in the N status. Forests of the Degradation Type lose nitrogen from the mineral soil (currently degradation is occurring on one site). Most forests that have moder or mor type humus and low‐soil pH values, and low N contents in the mineral soil have gone through the transient state of organic matter loss in the mineral soils. They accumulate organic matter in the forest floor (accumulation phase, currently 21 sites are accumulating 6–21 kg N ha?1 yr?1) or have reached a new (quasi‐) steady state with moder/mor type humus (n= 15). N retention in the accumulation phase has significantly increased in soil with N deposition (r2= 0.38), soil acidity (considering thickness of the forest floor as indices of soil acidity, r2= 0.43) and acid deposition (sulfate deposition, r2= 0.39). Retention of N (4–20 kg N ha?1 yr?1) by trees decreased and of soils increased with a decrease in the availability of base cations indicating the important role of trees for N retention in less acid soils and those of soils in more acid soils. Ecosystem theory could be successfully applied on the current data to understand the dynamics of N in temperate forest ecosystems.  相似文献   

5.
H. Staaf 《Oecologia》1987,72(1):58-64
Summary Leaf litter decomposition, levels of accumulated litter as well as the abundance and biomass of earthworms were measured in three mature beech forests in southern Sweden: one mor site, one poor mull site, and one rich mull site. The disappearance rate of beech litter, measured with litter bags, increased with increasing soil fertility. On the rich mull site, the disappearance rate was much higher than in the two other forests, due to the combined effects of higher earthworm activity, more favouable soil moisture conditions, and higher litter quality. Incubating the litter in finely meshed bags (1-mm mesh) to exclude macrofauna had a great effect on litter mass loss in the rich mull site, but it had only a minor effect in the other sites. Simultaneous incubations of local and transplanted leaf litter on the three study sites showed that the substrate quality of the litter increased in the order: mor site — poor mull site — rich mull site. Lignin, N, and P concentrations of the leaf litter failed to explain the observed differences in decomposition rates, and acid/base properties are suggested to be more important. Earthworm numbers per m2 were 2.5 (1 species) in the mor, 40 (6 species) in the poor mull and 220 (9 species) in the rich mull forest. Soil chemical conditions, notably pH, were suggested as the main factors determining the inter-site differences in abundance and species composition of earthworms. The role of litter decomposition and earthworm activity in the accumulation of organic matter in the forest floor in different types of beech woodlands are discussed.  相似文献   

6.
Summary The mean annual population density of earthworms was found to be 164.6 m-2 during a period of detailed study between October 1971 and September 1972. In a year of less detailed study between November 1972 and October 1973 the population density was 117.5 m-2 (139.8 m-2 when the type of extraction method was allowed for). Mean biomass densities in the two years of investigation were 41.0 g preserved wet wt m-2 (1971–1972) and 38.6 (possibly 39.2) g preserved wet wt m-2 (1972–1973).Comparison of the Brogden's Belt population and biomass densities with those reported from other woodlands indicates that soil type is more important than leaf litter type in determining the numerical abundance of earthworms. Population densities are lower in beechwoods on mor soils, mor soils also support significantly fewer species. As with numbers, mean biomass density in beechwoods on mor soils was significantly lower than that occurring in beechwoods on mull soils; the latter, in turn, being lower than those found in mixed deciduous woods on mull soils. Unlike population density biomass density is influenced by both soil and litter type, this is discussed by reference to mean body weights and food quality as reflected by tannin, nitrogen and carbohydrate content.The annual respiratory metabolism of the Brogden's Belt earthworms was calculated to be between 10.7 and 13.41 O2 m-2 a-1, which is equivalent to between 4.1 and 5.1% of the total soil metabolism. A production/biomass ratio of 0.49–0.58 was estimated, as was a net population efficiency of 22%.  相似文献   

7.
Diversity and storage function of mycorrhiza as well as soil organoprofile formation were investigated in a chronosequence of a pure Scots pine (Pinus sylvestris L.) stand, of Scots pine stands that were underplanted with beech (Fagus sylvatica L.) and in three pure beech stands of different age. Mycorrhiza diversity was higher in the pure beech stands compared to the pure pine stand. Beech and pine trees in the mixed stands had similar dominant mycorrhiza morphotypes. However, trees in two of the three pure beech stands were mycorrhized with other types. Mycorrhizal abundance and nutrient amounts of mycorrhizae associated with beech trees were higher in the mixed and in the pure beech stands compared to pine mycorrhizae indicating that nutrient uptake was higher in older beech than in older pine trees. Humus quality varied from pine to beech stands. Plant litter storage in the humus layer was highest in the youngest mixed stand and lowest in the oldest beech stand. Humus forms changed from moder grass-type in the pure Scots pine stand to mor-like moder and moder rich in fine humus with increasing age of beeches in the mixed stands. The older beech stands were characterised by oligomull and mull-like moder as the dominating humus forms. The ecologically favourable humus forms, i.e., nutrient rich humus forms in the older beech stands correlate well with the higher mycorrhizal diversity and abundance as well as the higher nutrient storage of their mycorrhizae in these stands. The results are also discussed with regard to the 'base-pump effect' of beech trees.  相似文献   

8.
Earthworms are keystone detritivores that can influence primary producers by changing seedbed conditions, soil characteristics, flow of water, nutrients and carbon, and plant–herbivore interactions. The invasion of European earthworms into previously earthworm-free temperate and boreal forests of North America dominated by Acer, Quercus, Betula, Pinus and Populus has provided ample opportunity to observe how earthworms engineer ecosystems. Impacts vary with soil parent material, land use history, and assemblage of invading earthworm species. Earthworms reduce the thickness of organic layers, increase the bulk density of soils and incorporate litter and humus materials into deeper horizons of the soil profile, thereby affecting the whole soil food web and the above ground plant community. Mixing of organic and mineral materials turns mor into mull humus which significantly changes the distribution and community composition of the soil microflora and seedbed conditions for vascular plants. In some forests earthworm invasion leads to reduced availability and increased leaching of N and P in soil horizons where most fine roots are concentrated. Earthworms can contribute to a forest decline syndrome, and forest herbs in the genera Aralia, Botrychium, Osmorhiza, Trillium, Uvularia, and Viola are reduced in abundance during earthworm invasion. The degree of plant recovery after invasion varies greatly among sites and depends on complex interactions with soil processes and herbivores. These changes are likely to alter competitive relationships among plant species, possibly facilitating invasion of exotic plant species such as Rhamnus cathartica into North American forests, leading to as yet unknown changes in successional trajectory.  相似文献   

9.
The aim of this study was to understand the effects of lime and gypsum on nitrogen and carbon turnover of the soil. A pot experiment was conducted in parallel with a field experiment which was set up in 1989 in a declining forest of the French Ardennes. A dystric cambisol, associated with a moder and mull humus separately, was used to study changes in the soil chemistry as a result of added lime and gypsum top-dressing.The lime was applied to the surface of an acid mull humus of an oak (Quercus petraea) stand and of a moder humus of a spruce (Picea abies) stand. A quantity of 2.8 t ha-1 equivalent CaO was supplied as CaCO3, CaCO3+MgO and CaSO4.2H2O. The experiment was installed in an open-air nursery for 20 months, during which the organic carbon and nitrogen in the solution were analysed monthly. They were analysed in the solid phase after 20 months. At the end of this period the changes in the soil and leachate depended mainly on the type of the material added.The leachate was enriched with nitrogen from the third month of the experiment under lime treatments and in the control. The same pattern was found under the two humus types but the magnitude was higher in soil with a mull humus. The nitrogen was mostly leached as NO3 --N in the carbonate treatments and in the control, whereas it was predominantly NH4 +-N under gypsum. The NO3 --N was 50% higher than NH4 +-N in the control and CaCO3, CaCO3+MgO treatments. In the CaSO4 treatment this phenomenon was reversed. The leaching of organic carbon was greater under gypsum than under the other treatments whatever the humus.In the solid phase of the soil (organic layers) the organic carbon and nitrogen concentration decreased significantly after liming, especially in the mull humus. Consequently it induced a decrease in C:N ratio of about 18% with respect to the control.  相似文献   

10.
Summary The distribution of mull and mor, in an area which is believed to have borne forest for a number of centuries at least, led to investigations into the reasons for their development.Although the term forest-floor type has been substituted for humus type, mull and mor are used in the Müller-Hesselman sense.There appeared to be no obvious relationship between the distribution of the various forest-floor subtypes and the results of chemical analyses and pH determinations on soil samples.Where free CaCO3 occurred in the A1-horizon, a mull forest floor had developed even on coarse sand and the associated herb flora differed only slightly from that occurring on very acid mull. As the manner in which lime influences most soil processes is still unknown, the areas in which free CaCO3 occurs were excluded from the investigations.Assessments of various other soil characteristics were made and the frequency of association of the various categories of these characteristics ascertained.It is concluded that the colour of the upper part of the A1-horizon and its degree of leaching are related to its texture, and that the forest-floor subtypes are more closely related to soil texture than to soil colour or degree of leaching.  相似文献   

11.

Background and aims

The aim of this study is to enhance our knowledge of nitrogen (N) cycling and N acquisition in tropical montane forests through analysis of stable N isotopes (δ15N).

Methods

Leaves from eight common tree species, leaf litter, soils from three depths and roots were sampled from two contrasting montane forest types in Jamaica (mull ridge and mor ridge) and were analysed for δ15N.

Results

All foliar δ15N values were negative and varied among the tree species but were significantly more negative in the mor ridge forest (by about 2 ‰). δ15N of soils and roots were also more negative in mor ridge forests by about 3 ‰. Foliar δ15N values were closer to that of soil ammonium than soil nitrate suggesting that trees in these forests may have a preference for ammonium; this may explain the high losses of nitrate from similar tropical montane forests. There was no correlation between the rankings of foliar δ15N in the two forest types suggesting a changing uptake ratio of different N forms between forest types.

Conclusions

These results indicate that N is found at low concentrations in this ecosystem and that there is a tighter N cycle in the mor ridge forest, confirmed by reduced nitrogen availability and lower rates of nitrification. Overall, soil or root δ15N values are more useful in assessing ecosystem N cycling patterns as different tree species showed differences in foliar δ15N between the two forest types.  相似文献   

12.
13.
韩琳  王鸽 《生态学杂志》2012,31(8):1893-1902
以长白山阔叶红松混交林为研究对象,于2006—2008年原位模拟不同形态氮((NH4)2SO4、NH4Cl和KNO3)沉降水平(22.5和45kgN·hm-2·a-1),利用树脂芯法技术(resin-core incubation technique)测定了表层(有机层0~7cm)和土层(0~15cm)土壤氮素净矿化、净氨化和净硝化通量的季节和年际变化规律。同时,结合前人报道的有关林地碳、氮过程及其环境变化影响的结果,力求有效预估森林生态系统中氮素年矿化通量对大气氮沉降量和水热条件等因子变化的响应。结果表明,长白山阔叶红松林地土壤氮素年净矿化通量为1.2~19.8kgN·hm-2·a-1,2008年不同深度的土壤氮素年净矿化通量均显著高于2006和2007年(P<0.05)。随着模拟氮沉降量增加,土壤氮素净矿化通量也随之增加,尤其外源NH4+-N输入对净矿化通量的促进作用更为明显(P<0.05),但随着施肥年限的延长,这种促进作用逐渐减弱。与林地0~15cm土壤相比,氮沉降增加对0~7cm有机层氮素净氨化和净矿化通量的促进作用更为明显,尤其NH4Cl处理的促进作用更大。结合前人报道的野外原位观测结果,土壤氮素年净矿化通量随氮素沉降量的增加而增大,氮沉降量对不同区域森林土壤氮素净矿化通量的贡献率约为52%;氮沉降量(x1)和pH值(x2)可以解释区域森林土壤氮素年净矿化通量(y)变化的70%(y=0.54x1-18.38x2-109.55,R2=0.70,P<0.0001)。前人研究结果仅提供区域年均温度,未考虑积温的影响,这可能是造成年净矿化通量与温度无关的原因。今后的研究工作应该加强区域森林土壤积温观测,进而更加准确地预估森林土壤氮素的年净矿化通量。  相似文献   

14.
There is growing interest in understanding how declining soil fertility in the prolonged absence of major disturbance drives ecological processes, or ‘ecosystem retrogression’. However, there are few well characterized study systems for exploring this phenomenon in the tropics, despite tropics occupying over 40% of the Earth's terrestrial surface. We studied two types of montane rain forest in the Blue Mountains of Jamaica that represent distinct stages in ecosystem development, i.e. an earlier stage with shallow organic matter and a late stage with deep organic matter (hereafter ‘mull’ and ‘mor’ stages). We characterized responses of soil fertility and plant, soil microbial and nematode communities to the transition from mull to mor and whether these responses were coupled. For soil abiotic properties, we found this transition led to lower amounts of both nitrogen (N) and phosphorus (P) and an enhanced N to P ratio. This led to shorter‐statured and less diverse forest, and convergence of tree species composition among plots. At the whole community (but not individual species) level foliar and litter N and P diminished from mull to mor, while foliar N to P and resorption efficiency of P relative to N increased, indicating increasing P relative to N limitation. We also found impairment of soil microbes (but not nematodes) and an increasing role of fungi relative to bacteria during the transition. Our results show that retrogression phenomena involving increasing nutrient (notably P) limitation can be important drivers in tropical systems, and are likely to involve aboveground–belowground feedbacks whereby plants produce litter of diminishing quality, impairing soil microbial processes and thus reducing the supply of nutrients from the soil for plant growth. Such feedbacks between plants and the soil, mediated by plant litter and organic matter quality, may serve as major though often overlooked drivers of long term environmental change.  相似文献   

15.
N mineralisation was investigated in the mor humus layer of a podzol at a forested catchment area of Saarejärve Lake in Eastern Estonia. The investigated areas were pine (Rhodococcumunderstorey) and spruce (Vaccinium understorey) stands, which are permanent sample plots of an integrated monitoring network. The seasonal pattern of net N mineralisation was studied by incubating undisturbed cores of mor humus (0–8 cm) in buried polyethylene bags in situ. Samples were collected and incubated between July 1996 and April 1998. The period of incubation was approximately 1 month, except for wintertime when incubation lasted till thawing of ground (5 months). The amounts of mineral nitrogen formed during monthly incubations in vegetation period vary considerably (0.4–8.7 kg ha–1). About 70% of the variation of net ammonification could be explained by environmental factors - temperature, initial moisture and pH. Ammonium was the dominant form of mineral nitrogen, which is typical for mor humus. The rate of nitrification was very low, and most of the annual net nitrification occurred during just one or two months (May–June, October) depending on site and year. Measured annual net N mineralisation was 29.2 kg ha–1 for the spruce stand and 23.6 kg ha–1 for the pine stand. These measures were found to be in good accordance with other N-fluxes in the ecosystem.  相似文献   

16.
The population of soil mesofauna in the basin of the small river subzone of the northern taiga (Karelia) has been investigated. It was shown that indexes of the number and mass of soil mesofauna in the landscape-ecological row of biogeocenosises are maximal in floodplain soils. The taxonomic composition and structure of domination of the soil mesofauna population depends on the location of biogeocenosis in the landscape: earthworms are dominants in riverine floodplain biogeocenosises, and larvae of elaterids and spiders prevail in the places outside of floodplains. The abundance of saprophytic invertebrates in floodplain biogeocenosises results in formation of humus of the mull type. A group of animals with mixed type of nutrition dominates in the places outside of floodplain soils that are related with humus of the moder-mor type. The population of rove beetles (Staphylinidae) allows the division of biogeocenosises into two groups according to their position in the landscape.  相似文献   

17.
The biological activity and the amount of living fungal mycelium in the mor humus of pine forests around an industrialized city were studied. The activities were lower in the more polluted zone than in a cleaner one but varied between sites within the zones. The relationship of these activities to the microbial environment was determined in both the total data and in the various zones separately. Soil respiration rate was positively related to ammonium nitrogen concentration of the humus in the less polluted zone but negatively in the more polluted zone, while it related negatively to total nitrogen concentration of the humus in the entire data set. DHA was partly accounted for by the variation in acidity parameters, and best by pH(CaCl2), with a positive relation. The length of FDA active fungal mycelium showed no significant variation between the zones or sites, and was thus poorly explained by the environmental variables. The weather conditions prevailing at two seasons did not explain any variation of the activities or the length of FDA mycelium, though the biological variables were in general positively related to the moisture of the humus.  相似文献   

18.
Barratt  B. C. 《Plant and Soil》1965,23(2):265-269
Summary At altitudes between 300 ft and more than 1,000 ft in Northern England the decomposition of white clover, ryegrass and Nardus litters was strongest in brown earths with mull. It was much weaker in brown earths with mor and weakest of all in gley soils. Decomposition also varied with the fibrosity of the litters and their method of placement, activity of the soil populations and pH.  相似文献   

19.
In two mature Danish beech forests, one growing on fertile mull, the other on acid mor, cycles through vegetation of Ca, Mg, K, Na, Mn and P are followed. Nutrient content is measured in precipitation, throughfall, stem flow, litter and herbage as well as in soil pool (0–10 cm).
In both forests, Na is found to pass vegetation in highest rate compared to soil pool, On acid mor, trees accumulate amounts of nutrients comparable to the amounts falling in precipitation, but on fertile mull trees accumulate more of all nutrients than that which falls in precipitation, with the exception of Mn.
P seems to be the limiting growth factors for trees on acid mor, and none of the nutrients investigated seems to limit growth on fertile mull.  相似文献   

20.
The formation of mor humus in an experimental grassland plot, which has been acidified by long-term fertiliser treatment, has been studied by comparing the rates of cellulose, soil organic matter and plant litter decay with those in an adjacent plot with near-neutral pH and mull humus. The decomposition of cellulose filter paper in litter bags of 5 mm, 1-mm and 45-μm mesh size buried at 3 to 4 cm depth the plots was followed by measuring the weight loss and changes in glucose content over a 6 month period. Soil pH was either 5.3 or 4.3. Decomposition of native soil organic matter and plant litter in soil from the same plots were followed using CO2 evolution in laboratory microcosms. Cellulose weight loss at pH 5.3 was greatest from the 5-mm mesh bags and least from the 45-um mesh bags. At pH 4.3 there was little weight loss from bags and no significant differences in weight loss between bags with different sized mesh. There was, however, a reduction in the glucose content of the hydrolysed and derivatised filter paper with time. The decomposition rate of native soil organic matter in the low pH soil was increased to that observed in the less acid soil when the pH of the former was increased from 4.3 to 5.3. The increase in decomposition rate of added plant litter in the more acid soil as a result of CA(OH)2 addition was only 60% of that observed in the soil with pH 5.3. These data support the hypothesis that the absence of soil animals and the restricted microbial decomposition in the acidic soil was responsible for mor humus formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号