共查询到20条相似文献,搜索用时 0 毫秒
1.
Atp11p is a protein of Saccharomyces cerevisiae required for the assembly of the F(1) component of the mitochondrial F(1)F(0)-ATP synthase. This study presents evidence that Atp11p binds selectively to the beta-subunit of F(1). Under conditions in which avidin-Sepharose beads specifically adsorbed biotinylated Atp11p from yeast mitochondrial extracts, the F(1) beta-subunit coprecipitated with the tagged Atp11p protein. Binding interactions between Atp11p and the entire beta-subunit of F(1) or fragments of the beta-subunit were also revealed by a yeast two-hybrid screen: Atp11p bound to a region of the nucleotide-binding domain of the beta-subunit located between Gly(114) and Leu(318). Certain elements of this sequence that would be accessible to Atp11p in the free beta-subunit make contact with adjacent alpha-subunits in the assembled enzyme. This observation suggests that the alpha-subunits may exchange for bound Atp11p during the process of F(1) assembly. 相似文献
2.
Oxa1 directly interacts with Atp9 and mediates its assembly into the mitochondrial F1Fo-ATP synthase complex 下载免费PDF全文
The yeast Oxa1 protein is involved in the biogenesis of the mitochondrial oxidative phosphorylation (OXPHOS) machinery. The involvement of Oxa1 in the assembly of the cytochrome oxidase (COX) complex, where it facilitates the cotranslational membrane insertion of mitochondrially encoded COX subunits, is well documented. In this study we have addressed the role of Oxa1, and its sequence-related protein Cox18/Oxa2, in the biogenesis of the F(1)F(o)-ATP synthase complex. We demonstrate that Oxa1, but not Cox18/Oxa2, directly supports the assembly of the membrane embedded F(o)-sector of the ATP synthase. Oxa1 was found to physically interact with newly synthesized mitochondrially encoded Atp9 protein in a posttranslational manner and in a manner that is not dependent on the C-terminal, matrix-localized region of Oxa1. The stable manner of the Atp9-Oxa1 interaction is in contrast to the cotranslational and transient interaction previously observed for the mitochondrially encoded COX subunits with Oxa1. In the absence of Oxa1, Atp9 was observed to assemble into an oligomeric complex containing F(1)-subunits, but its further assembly with subunit 6 (Atp6) of the F(o)-sector was perturbed. We propose that by directly interacting with newly synthesized Atp9 in a posttranslational manner, Oxa1 is required to maintain the assembly competence of the Atp9-F(1)-subcomplex for its association with Atp6. 相似文献
3.
Tzagoloff A Barrientos A Neupert W Herrmann JM 《The Journal of biological chemistry》2004,279(19):19775-19780
The F(0)F(1)-ATPase complex of yeast mitochondria contains three mitochondrial and at least 17 nuclear gene products. The coordinate assembly of mitochondrial and cytosolic translation products relies on chaperones and specific factors that stabilize the pools of some unassembled subunits. Atp10p was identified as a mitochondrial inner membrane component necessary for the biogenesis of the hydrophobic F(0) sector of the ATPase. Here we show that, following its synthesis on mitochondrial ribosomes, subunit 6 of the ATPase (Atp6p) can be cross-linked to Atp10p. This interaction is required for the integration of Atp6p into a partially assembled subcomplex of the ATPase. Pulse labeling and chase of mitochondrial translation products in vivo indicate that Atp6p is less stable and more rapidly degraded in an atp10 null mutant than in wild type. Based on these observations, we propose Atp10p to be an Atp6p-specific chaperone that facilitates the incorporation of Atp6p into an intermediate subcomplex of ATPase subunits. 相似文献
4.
Atp11p and Atp12p were first described as proteins required for assembly of the F(1) component of the mitochondrial ATP synthase in Saccharomyces cerevisiae (Ackerman, S. H., and Tzagoloff, A. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 4986-4990). Here we report the isolation of the cDNAs and the characterization of the human genes for Atp11p and Atp12p and show that the human proteins function like their yeast counterparts. Human ATP11 spans 24 kilobase pairs in 9 exons and maps to 1p32.3-p33, while ATP12 contains > or =8 exons and localizes to 17p11.2. Both genes are broadly conserved in eukaryotes and are expressed in a wide range of tissues, which suggests that Atp11p and Atp12p are essential housekeeping proteins of human cells. The information reported herein will be useful in the evaluation of patients with ascertained deficiencies in the ATP synthase, in which the underlying biochemical defect is unknown and may reside in a protein that influences the assembly of the enzyme. 相似文献
5.
The non-catalytic nucleotide-binding site of mitochondrial ATPase is localised on the alpha-subunit(s) of factor F1 总被引:2,自引:0,他引:2
The incubation of isolated factor F1 with the di-aldehyde derivative of ADP (oxADP) which is formed as a result of ADP treatment by periodate, causes the covalent binding of 0.9--1 molecules of the oxADP with a molecule of the enzyme. This modification of factor F1 is not accompanied by any changes in the ATPase activity of the enzyme. The modification of factor F1 is preceded by the reversible binding of oxADP with the enzyme with a Kd of 80 micro M. ADP partly prevents factor F1 from modification by oxADP. The electrophoresis of modified factor F1 in polyacrylamide gel in the presence of sodium dodecyl sulphate showed that oxADP binds with the alpha-subunit(s) of factor F1. When submitochondrial particles are incubated with [3H]oxADP, the main part of the radioactive label may be discovered in the polypeptide with a molecular weight of some 30 000 which is probably the adenine nucleotides' translocase. The isolation of factor F1 from particles preincubated with [3H]oxADP showed that the membrane-bound factor F1 covalently binds 0.2--0.3 mol of oxADP per mol of enzyme. Here again, all the oxADP is bound with the alpha subunit(s) of factor F1. The modification of membrane-bound factor F1 by oxADP is accompanied by the partial inhibition of the particles' ATPase activity. The results obtained testify to the fact that the non-catalytic site of mitochondrial ATP ase located on the alpha-subunit(s) of factor F1 may participate in the mechanism of ATP hydrolysis by membrane-bound ATPase. 相似文献
6.
Ackerman SH 《Biochimica et biophysica acta》2002,1555(1-3):101-105
The bioenergetic needs of aerobic cells are met principally through the action of the F(1)F(0) ATP synthase, which catalyzes ATP synthesis during oxidative phosphorylation. The catalytic unit of the enzyme (F(1)) is a multimeric protein of the subunit composition alpha(3)beta(3)(gamma)(delta) epsilon. Our work, which employs the yeast Saccharomyces cerevisiae as a model system for studies of mitochondrial function, has provided evidence that assembly of the mitochondrial alpha and beta subunits into the F(1) oligomer requires two molecular chaperone proteins called Atp11p and Atp12p. Comprehensive knowledge of Atp11p and Atp12p activities in mitochondria bears relevance to human physiology and disease as these chaperone actions are now known to exist in mitochondria of human cells. 相似文献
7.
The mitochondrial import and assembly of the F1ATPase subunits requires, respectively, the participation of the molecular chaperones hsp70SSA1 and hsp70SSC1 and other components operating on opposite sides of the mitochondrial membrane. In previous studies, both the homology and the assembly properties of the F1ATPase alpha-subunit (ATP1p) compared to the groEL homologue, hsp60, have led to the proposal that this subunit could exhibit chaperone-like activity. In this report the extent to which this subunit participates in protein transport has been determined by comparing import into mitochondria that lack the F1ATPase alpha-subunit (delta ATP1) versus mitochondria that lack the other major catalytic subunit, the F1ATPase beta-subunit (delta ATP2). Yeast mutants lacking the alpha-subunit but not the beta-subunit grow much more slowly than expected on fermentable carbon sources and exhibit delayed kinetics of protein import for several mitochondrial precursors such as the F1 beta subunit, hsp60MIF4 and subunits 4 and 5 of the cytochrome oxidase. In vitro and in vivo the F1 beta-subunit precursor accumulates as a translocation intermediate in absence of the F1 alpha-subunit. In the absence of both the ATPase subunits yeast grows at the same rate as a strain lacking only the beta-subunit, and import of mitochondrial precursors is restored to that of wild type. These data indicate that the F1 alpha-subunit likely functions as an "assembly partner" to influence protein import rather than functioning directly as a chaperone. These data are discussed in light of the relationship between the import and assembly of proteins in mitochondria. 相似文献
8.
It is known that the negatively stained preparations of inner mitochondrial membrane display characteristic ∼9 nmF
1 (ATPase) knobs projecting from the matrix surface. Freeze-etch studies have reported the absence of such knobs from the “etched”
surface of the inner mitochondrial membranes. We have demonstrated their presence on the surface of SMP (submitochondrial
particles) prepared by freeze-drying for transmission electron microscopy. This identification has been substantiated by comparison
with the freeze-dried TU particles (trypsin-urea treated SMP) that are devoid ofF
1 (ATPase). It has been suggested that a layer of water molecules is strongly adsorbed to the surface of SMP and does not sublime
during normal freeze-“etching.” 相似文献
9.
The leader peptide of yeast Atp6p is required for efficient interaction with the Atp9p ring of the mitochondrial ATPase 总被引:1,自引:0,他引:1
Zeng X Kucharczyk R di Rago JP Tzagoloff A 《The Journal of biological chemistry》2007,282(50):36167-36176
Atp6p (subunit 6) of the Saccharomyces cerevisiae mitochondrial ATPase is synthesized with an N-terminal 10-amino acid presequence that is cleaved during assembly of the complex. This study has examined the role of the Atp6p presequence in the function and assembly of the ATPase complex. Two mutants were constructed in which the codons for amino acids 2-9 or 2-10 of the Atp6p precursor were deleted from the mitochondrial ATP6 gene. The concentration of Atp6p and ATPase complex was approximately 2 times less in the mutants. The lower concentration of ATPase complex in the leaderless mutants correlated with less Atp6p complexed with the Atp9p ring of the F0 sector and with accumulation of an Atp6p-Atp8p complex that aggregated into polymers destined for eventual proteolytic elimination. We propose that the presequence either targets Atp6p to the Atp9p or signals insertion of the Atp6p precursor into a microcompartment of the membrane for more efficient interaction with the Atp9p ring. Despite the ATPase deficiency, growth of the leaderless atp6 mutants on respiratory substrates and the efficiency of oxidative phosphorylation were similar to that of wild type, indicating that the mutations did not affect the proton permeability of mitochondria. 相似文献
10.
11.
It is known that the negatively stained preparations of inner mitochondrial membrane display characteristic approximately 9 nm F1 (ATPase) knobs projecting from the matrix surface. Freeze-etch studies have reported the absence of such knobs from the "etched" surface of the inner mitochondrial membranes. We have demonstrated their presence on the surface of SMP (submitochondrial particles) prepared by freeze-drying for transmission electron microscopy. This identification has been substantiated by comparison with freeze-dried TU particles (trypsin-urea treated SMP) that are devoid of F1 (ATPase). It has been suggested that a layer of water molecules is strongly adsorbed to the surface of SMP and does not sublime during normal freeze-"etching." 相似文献
12.
Nuclear genes encoding the yeast mitochondrial ATPase complex. Analysis of ATP1 coding the F1-ATPase alpha-subunit and its assembly 总被引:8,自引:0,他引:8
M Takeda W J Chen J Saltzgaber M G Douglas 《The Journal of biological chemistry》1986,261(32):15126-15133
Mitochondria prepared from the yeast nuclear pet mutant N9-84 lack a detectable F1-ATPase activity. Genetic complementation of this mutant with a pool of yeast genomic DNA in the yeast Escherichia coli shuttle vector YEp13 restored its growth on a nonfermentable carbon source. Mitochondria prepared from the transformed host contained an 8-fold higher than normal level of the F1 alpha-subunit and restored ATPase activity to 50% that of the wild-type strain. Deletion and nucleotide sequence analysis of the complementing DNA on the plasmid revealed a coding sequence designated ATP1 for a protein of 544 amino acids which exhibits 60 and 54% direct protein sequence homology with the proton-translocating ATPase alpha-subunits from tobacco chloroplast and E. coli, respectively. In vitro expression and mitochondrial import experiments using this ATP1 sequence showed that additional amino-terminal sequences not present in the comparable plant and bacterial subunits function as transient sequences for import. 相似文献
13.
14.
Assembly of mitochondrial F1-ATPase in Saccharomyces cerevisiae requires the molecular chaperone, Atp11p. Database searches have identified protein sequences from Schizosaccharomyces pombe and two species of Drosophila that are homologous to S. cerevisiae Atp11p. A cDNA encoding the putative Atp11p from Drosophila yakuba was shown to complement the respiratory deficient phenotype of yeast harboring an atp11::HIS3 disruption allele. Furthermore, the product of this Drosophila gene was shown to interact with the S. cerevisiae F1 beta subunit in the yeast two-hybrid assay. These results indicate that Atp11p function is conserved in higher eukaryotes. 相似文献
15.
Binding of ADP to beef-heart mitochondrial ATPase (F1) 总被引:1,自引:0,他引:1
1. ADP binding to beef-heart mitochondrial ATPase (F1), in the absence of Mg2+, has been determined by separating the free ligand by ultrafiltration and determining it in the filtrate by a specially modified isotachophoretic procedure. 2. Since during the binding experiments the 'tightly' bound ADP (but not the ATP) dissociates, it is necessary to take this into account in calculating the binding parameters. 3. The binding data show that only one tight binding site (Kd about 0.5 microM) for ADP is present. 4. It is not possible to calculate from the binding data alone the number of or the dissociation constants for the weak binding sites. It can be concluded, however, that the latter is not less than about 50 microM. 相似文献
16.
17.
ATP25, a new nuclear gene of Saccharomyces cerevisiae required for expression and assembly of the Atp9p subunit of mitochondrial ATPase 总被引:1,自引:0,他引:1 下载免费PDF全文
We report a new nuclear gene, designated ATP25 (reading frame YMR098C on chromosome XIII), required for expression of Atp9p (subunit 9) of the Saccharomyces cerevisiae mitochondrial proton translocating ATPase. Mutations in ATP25 elicit a deficit of ATP9 mRNA and of its translation product, thereby preventing assembly of functional F(0). Unlike Atp9p, the other mitochondrial gene products, including ATPase subunits Atp6p and Atp8p, are synthesized normally in atp25 mutants. Northern analysis of mitochondrial RNAs in an atp25 temperature-sensitive mutant confirmed that Atp25p is required for stability of the ATP9 mRNA. Atp25p is a mitochondrial inner membrane protein with a predicted mass of 70 kDa. The primary translation product of ATP25 is cleaved in vivo after residue 292 to yield a 35-kDa C-terminal polypeptide. The C-terminal half of Atp25p is sufficient to stabilize the ATP9 mRNA and restore synthesis of Atp9p. Growth on respiratory substrates, however, depends on both halves of Atp25p, indicating that the N-terminal half has another function, which we propose to be oligomerization of Atp9p into a proper size ring structure. 相似文献
18.
1. Isolated F1 contains 14.9% N, indicating the presence of at least 8% non-protein material. The Lowry method, standardized with bovine serum albumin, correctly measures the protein content. 2. An extinction coefficient of 28.5 mM-1.cm-1 at 367.5 nm was found for aurovertin D in ethanol. 3. The fluorescence enhancement of aurovertin bound to F1 at pH 7.5 was found to be more than 100-fold. 4. Binding parameters calculated from the fluorescence enhancement with fixed F1 and variable aurovertin concentrations, and vice versa, indicate two binding sites per F1 molecule. 5. The fluorescence data are not readily interpreted on the basis of successive binding of aurovertin by 3-component binding reactions of the form E + A in equilibrium EA, but fit closely a model of two non-interacting sites binding aurovertin in a 4-component reaction, EF + A in equilibrium EA + F, with an equilibrium constant of about 2. 相似文献
19.
M T De Gómez-Puyou K Nordenbrand U Muller A Gómez-Puyou L Ernster 《Biochimica et biophysica acta》1980,592(3):385-395
The interaction of soluble mitochondrial ATPase from beef heart with the natural ATPase inhibitor was studied. It was found that the phosphorylation of small amounts of ADP by phosphoenolpyruvate and pyruvate kinase, and an ensuing catalytic cycle supports the binding of the inhibitor to the enzyme. The association of the inhibitor with F1-ATPase does not increase the content of ATP in the F1-ATPase-inhibitor complex. The inhibitor of catalytic activity bathophenanthroline-Fe2+ chelate prevents the interaction, while the association of the inhibitor with F1-ATPase is delayed if the reaction is carried out in 2H2O. The date indicate that a transient state involved in the catalytic cycle is the form of the enzyme that interacts with the inhibitor. The proton-motive force-induced dissociation of the inhibitor from particulate ATPase is prevented by bathophenanthroline-Fe2+ chelate and nitrobenzofurazan chloride, which indicates that a functional catalytic (beta) subunit is required for the proton-motive force-induced release of the inhibitor. The data suggest a direct involvement of catalytic (beta) subunit in the mechanism by which the F1-ATPase senses the proton-motive force. 相似文献