首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low energy x-rays (Eph 50 keV) are widely used in diagnostic radiology and radiotherapy. However, data on their relative biological effectiveness (RBE) are scarce. Of particular importance for risk estimation are the RBE values of x-rays in the range which is commonly used in mammography (10–30 keV). We have determined clonogenic survival after low-energy x-ray irradiation for three cell lines: primary human epidermal keratinocytes (HEKn), mouse fibroblasts (NIH/3T3) and Chinese hamster fibroblasts (V79). Experiments were performed with a 25 kV x-ray tube and compared to 200 kV x-rays as a reference. Compared to the effect of 200 kV x-rays, irradiation with 25 kV x-rays resulted in a decreased survival rate in the murine fibroblasts, but not in the human epithelial cell line. The RBE value was calculated for 10% surviving fraction. For HEKn cells, RBE was 1.33±0.27, for NIH/3T3 cells 1.25±0.07 and for V79 cells 1.10±0.09, respectively. No consistently increased RBE was observed in the various cell lines. Nevertheless, a potential of increased cytogenetic changes has to be considered for risk estimation of low-energy x-rays.  相似文献   

2.
We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of -particles emitted from radon daughters, we concentrated our studies on the efficiency of -particles. Confluent cultures of M/10 cells were exposed to accelerated -particles [beam energy incident at the cell monolayer=3.85 MeV, incident linear energy transfer (LET) in cell= 109 keV/µm] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for -particles (D0 = 0.73± 0.04 Gy), while a shoulder was observed for x-rays (/ = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET -particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for cc-particles and linear-quadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges. The RBE for the induction of total chromosome aberrations (2.3 at 37% cell survival) was lower than that for cell survival, suggesting that chromosome damage at the first postirradiation mitosis is not sufficient to account for the increased efficiency of -particles in the induction of lethal effects. However, measured cell survival after -particle irradiation can be predicted from chromosome damage when cells at different population doubling numbers after irradiation are considered. In fact, a high percentage of -irradiated cells carried unstable chromosomal aberrations up to population doubling number about 5. On the other hand, x-ray-induced damage disappeared rapidly. These results suggest that -particle-induced reproductive death of human mammary epithelial cells is caused by chromosome damage in the first 5 generations following exposure, whereas the in-activation produced by low-LET radiation is mostly related to the aberrations at the first post-irradiation mitosis.  相似文献   

3.
A relative biological effectiveness (RBE) not much larger than unity is usually assumed for soft x-rays (up to approximately 50 keV) that are applied in diagnostic radiology such as mammography, in conventional radiotherapy and in novel radiotherapy approaches such as x-ray phototherapy. On the other hand, there have been recent claims of an RBE of more than 3 for mammography and respective conventional x-rays. Detailed data on the RBE of soft x-rays, however, are scarce. The aim of the present study was to determine the effect of low-energy x-rays on chromosomal damage in vitro, in terms of micronucleus induction. Experiments were performed with 25 kV x-rays and a 200 kV x-ray reference source. The studies were carried out on primary human epidermal keratinocytes (HEKn), human fibroblasts (HFIB) and NIH/3T3 mouse fibroblasts. Micronucleus (MN) induction was assayed after in vitro irradiation with doses ranging from 1 to 5.2 Gy. Compared to the effect of 200 kV x-rays, 25 kV x-rays resulted in moderately increased chromosomal damage in all cell lines studied. This increase was observed for the percentage of binucleated (BN) cells with micronuclei as well as for the number of micronuclei per BN cell. Moreover, the increased number of micronuclei per micronucleated BN cell in human keratinocytes and 3T3 mouse fibroblasts suggests that soft x-rays induce a different quality of damage. For all cell lines studied the analysis of micronucleus induction by 25 kV soft x-rays compared to 200 kV x-rays resulted in an RBE value of about 1.3. This indicates a somewhat enhanced potential of soft x-rays for induction of genetic effects.  相似文献   

4.
Exposure of human G0 lymphocytes to high-LET particles under different conditions has been seen, unlike low-LET radiations, to be substantially effective in the induction of sister chromatid exchanges (SCE). However, whereas for fast neutrons a linear dose response of SCE has been determined, there is no sign of a dose-response relationship for α-particles. A likely reason for this lack of dose dependence may be the irradiation procedure. Therefore, a technique developed in our laboratory to ensure uniformity of irradiation with α-particles was used in the present study. Monolayers of 3 h-stimulated lymphocytes were exposed with α-particles from 241Am. Underdispersion was found for the cell-to-cell variance of the number of SCE. The dose response of SCE was linear, with a yield of 3.4 SCE per cell and per Gray. Received: 26 April 1996 / Accepted in revised form: 24 July 1996  相似文献   

5.
We have studied the dependence of clonogenic bystander effects on defects in the pathways of DNA double-strand break (DSB) repair and on linear energy transfer (LET). The single-ion microbeam of the Physikalisch-Technische Bundesanstalt (PTB) was used to irradiate parental Chinese hamster ovary cells or derivatives deficient in nonhomologous end joining (NHEJ) or homologous recombination (HR) in the G1-phase of the cell cycle. Cell nuclei were targeted with 10 MeV protons (LET = 4.7 keV/μm) or 4.5 MeV α-particles (LET = 100 keV/μm). During exposure, the cells were confluent, allowing signal transfer through both gap junctions and diffusion. When all cell nuclei were targeted with 10 MeV protons, approximately exponential survival curves were obtained for all three cell lines. When only 10% of all cell nuclei were targeted, a significant bystander effect was observed for parental and HR-deficient cells, but not for NHEJ-deficient cells. For all three cell lines, the survival data after exposure of all cell nuclei to 4.5 MeV α-particles could be fitted by exponential curves. When only 10% of all cell nuclei were targeted, significant bystander effects were obtained for parental and HR-deficient cells, whereas for NHEJ-deficient cells a small, but significant, bystander effect was observed only at higher doses. The data suggest that bystander cell killing is a consequence of un- or misrejoined DSB which occur in bystander cells during the S-phase as a result of the processing of oxidative bistranded DNA lesions. The relative contributions of NHEJ and HR to the repairing of DSB in the late S/G2-phase may affect clonogenic bystander effects.  相似文献   

6.
Irradiation of human lymphocytes by x-rays has been seen, in past studies, to produce increasing frequencies of chromosome aberrations at lower x-ray energies. However, in one earlier irradiation experiment with chromium x-rays, the relative biological effectiveness (RBE) did not appear to be larger than that of hard x-rays, especially at higher doses. A possible reason for this unexpected result may have been the irradiation and culture conditions. We have, therefore, in the present study used a technique that has been developed in our laboratory to ensure uniformity of irradiation within lymphocytes and to avoid artefacts due to the cell cycle kinetics. Monolayers of 3-h-stimulated lymphocytes were exposed to 5.4 keV x-rays. A linear-quadratic dose-response was found for dicentrics. The comparison to an earlier finding with 220 kV x-rays shows the expected result of the RBE of the 5.4 keV x-rays to be above that of 220 kV x-rays. The intercellular distribution of dicentrics did not differ significantly from a Poisson distribution. Received: 17 January 1997 / Accepted in revised form: 17 July 1997  相似文献   

7.
Irradiation of human lymphocytes by α-particles under different conditions has been seen to be substantially more effective in the induction of dicentric chromosomes than irradiation by ψ-rays. However, the relative biological effectiveness (RBE) determined in these studies RBE are likely to be due in part to differing exposure conditions. Therefore, a technique designed to insure iniformity of irradiation was developed in the present study, and complications due to the cell cycle kinetics were controlled. After stimulation with phytohaemagglutinin (PHA), separated lymphocytes were allowed to attach for 3 h to the thin foil bottom of an irradiation chamber. Cell monolayers were exposed with α-particles from241Am. Strong over-dispersion was noted for the cell-to-cell variance of the number of dicentrics. The dose response of dicentrics was linear, with a yield of 0.27 dicentrics per cell and per Gy. This corresponds to a low dose RBE of 15 relative to137Cs γ-ray exposure under the same experimental conditions.  相似文献   

8.
The production of dicentric chromosomes in human lymphocytes by β-particles of yttrium-90 (Y-90) was studied in vitro to provide a basis of biological dosimetry after radiosynoviorthesis (RSO) of persistent synovitis by intra-articular administration of yttrium-90 citrate colloid. Since the injected colloid may leak into the lymphatic drainage exposing other parts of the body to radiation, the measurement of biological damage induced by β-particles of Y-90 is important for the assessment of radiation risk to the patients. A linear dose–response relationship (α = 0.0229 ± 0.0028 dicentric chromosomes per cell per gray) was found over the dose range of 0.2176–2.176 Gy. The absorbed doses were calculated for exposure of blood samples to Y-90 activities from 40 to 400 kBq using both Monte Carlo simulation and an analytical model. The maximum low-dose RBE, the RBEM which is equivalent to the ratio of the α coefficients of the dose–response curves, is well in line with published results obtained earlier for irradiation of blood of the same donor with heavily filtered 220 kV X-rays (3.35 mm copper), but half of the RBEM relative to weakly filtered 220 kV X-rays. Therefore, it can be concluded that for estimating an absorbed dose during RSO by the technique of biological dosimetry, in vitro and in vivo data for the same radiation quality are necessary.  相似文献   

9.
Populations of Chinese hamster cells, synchronized by selecting for cells at or close to division, were exposed to 250 kvp x-rays and to ultraviolet light at different stages of the cell cycle and colony-forming ability examined thereafter. These cells were found to be most resistant to x-rays during the latter part of the DNA synthetic period (S) and to be about equally sensitive before (G1) and after (G2) this period. Multitarget type curves of the same slope (Do ~ 200 rad) only approximately fitted the survival data at different stages in the cycle. The changes in response were primarily due to variations in the shoulders (or extrapolation numbers) of the curves however. The response to ultraviolet light differed from that to x-rays. Resistance was greatest in G2 and changes in both shoulder and slope of the survival curves occurred throughout the cell cycle. The x-ray and ultraviolet responses for component stages of the cell cycle were respectively compounded into expected survival data for a log phase asynchronous population of hamster cells and found to agree well with direct experiment.  相似文献   

10.
Osipov  A. N.  Lizunova  E. Yu.  Gur’ev  D. V.  Vorob’eva  N. Yu. 《Biophysics》2011,56(5):931-935
A series of experiments to study the delayed effects of γ-radiation exposure in different generations of the progenies of irradiated cells of the ovary of the Chinese hamster CHO-K1 is conducted. It is shown that, in the progenies of the cells irradiated at a dose of 1 Gy, the following effects are observed: in cell generations 9–27, an increase in the genome damage, intracellular production of reactive oxygen species, percentage of apoptotic cells, and cell sensitivity to additional exposure (irradiation at a dose of 10 Gy); in cell generations 30–42, a decrease in these parameters to control values and increased resistance to additional exposure. It is assumed that the decrease in these parameters to the control values in postradiation cell generations 30–42 is caused by elimination of damaged cells or transition of genomic instability into a hidden (latent) condition.  相似文献   

11.
12.
A study was made of induction of mutations, resistant to 6-thioguanine (TGr), and reproductive death of Chinese hamster cells after irradiation by fission-spectrum fast neutrons (mean energy of 0.75 MeV) with doses of 10-130 cGy. A high relative biological effectiveness (RBE) of fast neutrons was shown. The maximum RBE values (13-16) were within the dose range inducing minimum mutagenic and lethal effects. RBE decreased with the dose increase. Inspite of high mutagenic effectiveness of neutrons, estimated according to TGr mutation frequency per cell per dose unit, their relative mutagenic effectiveness, estimated per cell per one lethal event, did not substantially differ from that of X-radiation.  相似文献   

13.
We report here a comparative analysis of RBE for lethality of a single pulse (duration 65 micros) of fast neutron with ultra high dose rates (up to 6 x 10(6) Gy/s) and continuous neutron radiation (3.6 x 10(3) s) of the pulse reactor BARS-6. Three diploid strains, one haploid strain and three diploid repair-deficient strains (rad52-1/rad52-1; rad54/rad54; rad2/rad2) were used. The RBE values (D(0gamma)/1D(0n)) of a single pulse and continuous neutron irradiation were equal (1.7-1.8) with maximum RBE (4.1-3.1) in region of low doses (shoulder region). Haploid cells were found to be more (3 times) sensitive to both gamma-rays and neutrons than the wild type. There was no obvious decrease in the RBE of 1.9 in highly sensitive haploid cells as compared with highly resistant diploid cells. The repair-deficient strains (rad52-1/rad52-1; rad54/rad54) were more (up to 10 fold) sensitive to both neutrons and gamma-rays as compared with their parent line. The RBE values of 1.5-1.7 of neutrons for these mutants (independent by of the mode of irradiation) were found. The repair-deficient mutant rad2/rad2 had similar sensitivity as a wild type and a RBE value was 2.0. We have concluded that biological effectiveness of the neutrons of pulse reactor BARS-6 was independent of the dose-rate, differing up to 10(8) fold. The RBE didn't vary significantly with the capacity of cells to repair DNA damages.  相似文献   

14.
A radioresistant cell strain from human fibrosarcoma HT1080 has been obtained after prolonged exposure to x-rays for 7 months (2 Gy per day, 5 days per week). This new strain, HT1080R, differs from HT1080 in a significantly increased ability of clonogenical survival, with coefficient α decreasing from 0.161 to 0.123 Gy–1 and coefficient β decreasing from 0.0950 to 0.0565 Gy–2. Furthermore, the radioresistance of HT1080R proved to be stable in long-term passaged cultures as well as in frozen samples. Differences between the two cell lines are also observed in the G-banded karyotype; the new cell line shows monosomy of chromosome 17 and loss of 5p+ and 11q+ present in the parental cells. These data suggest that the radioresistance may have been caused by radiation-induced cell mutation and that the resistant cells may have been selected by repeated irradiations. In order to characterize this new strain, the ability of the cells to rejoin DNA double-strand breaks, the cell cycle distribution and the amount of apoptosis after irradiation have been estimated; however, no differences are observed between these two cell strains. Although the mechanism of the elevated radioresistance remains unknown, this pair of cell strains can provide a new model system for further investigations with regard to the mechanisms of cellular radioresistance. The results also show that any type of irradiation similar to the schedules used in radiotherapy can lead to the formation and selection of more radioresistant cell clones in vitro, a phenomenon with possible implications for radiotherapy. Received: 30 October 1997 / Accepted in revised form: 9 April 1998  相似文献   

15.
The dose-effect dependence of cytogenetic damage after single dose irradiation in the dose range of 0.1-2 Gy and the adaptive response after double-dose irradiation were studied on Chinese hamster and human melanoma cells in culture. The non-linear dose dependencies were found for the induction of chromosome aberrations with decrease in cell radiosensitivity in the definite dose range. This decrease started at 10 and 20 cGy for melanoma and Chinese hamster cells respectively. The maximal adaptive response was induced at 1 cGy for melanoma cells and at 20 cGy for Chinese hamster cells. It can be supposed that the same inducible repair processes are responsible for non-linearity of dose-effect curves and induction of the adaptive response. These processes are similar in mechanisms and different in quantitative proportion for different cell types.  相似文献   

16.
Synchronized Chinese hamster cells were irradiated in air and in nitrogen at various points in the cell cycle. The irradiations were carried out after flushing with air or nitrogen with the medium removed from the mono-layer of cells. Under these conditions the dose-modifying factor, or oxygen enhancement ratio, was between 2.0 and 2.3 for survival in asynchronous cells. The variation in x-ray sensitivity evident as the cell progresses through its cycle was not differentially affected by its state of oxygenation at the time of irradiation. The x-ray age-response curves for irradiation in air and in nitrogen were similar at each point, except for the dose-modifying factor. This was true not only for the cells of a normal short generation time (10 hours) subline of the V79 line but also for a longer generation time (with longer GC period) subline derived from a "small colony". The variation in radiosensitivity as the cell progresses through its cycle must therefore be due to factors other than change in oxygen tension within the cell. The fact that the same variation in x-ray sensitivity with age exists for hypoxic cells as for well-oxygenated cells has a bearing on the radiotherapy of tumors which contain cells at low oxygen tensions.  相似文献   

17.
Terminal sialylation of therapeutic glycoprotein is important for biological activity and in vivo stability. The enzyme α2,3-sialyltransferase is the key enzyme that links sialic acids to the termini of glycans in the Chinese hamster ovary (CHO) cell line. Terminal sialylation is affected by numerous factors, but the elements that regulate α2,3-sialyltransferase are not known. We investigated the relationship between α2,3-sialyltransferase activity, ammonium concentration, and cell attachment area-based cell concentration in a recombinant human erythropoietin (rhEPO)-producing CHO cell line. We found that ammonium in the culture medium had almost no effect on α2,3-sialyltransferase activity, but that the activity was affected by cell attachment area-based cell concentration; α2,3-sialyltransferase activity and terminal sialylation of rhEPO decreased with increasing the cell concentration. These results demonstrate that the cell attachment area-based cell concentration is an important factor that affects 2,3-sialyltransferase activity and terminal sialylation of CHO cells.  相似文献   

18.
Summary The colony-forming ability of Chinese hamster fibroblast cells in vitro has been investigated throughout the depth dose profile of a negative pion beam. In the peak and 2 cm beyond, the RBE for macroclones (more than 50 cells per clone) was 1.3 and in the plateau region 0.8–1.0. All of the microclones (2–49 cells per clone) were observed as well. The RBE values are the same for peak and somewhat higher for plateau and post peak than found in cell survival studies referring to macroclones.Supported by the Swiss National Science Foundation  相似文献   

19.
The Monte Carlo track structure code PARTRAC has been further improved by implementing electron scattering cross-sections for liquid water and by explicitly modelling the interaction of water radicals with DNA. The model of the genome inside a human cell nucleus in its interphase is based on the atomic coordinates of the DNA double helix with an additional volume for the water shell. The DNA helix is wound around histone complexes, and these nucleosomes are folded into chromatin fibres and further to fibre loops, which are interconnected to build chromosomes with a territorial organisation. Simulations have been performed for the irradiation of human fibroblast cells with carbon K and aluminium K ultrasoft x-rays, 220 kVp x-rays and 60Co γ-rays. The ratio single-strand breaks to double-strand breaks (ssb/dsb) for both types of ultrasoft x-rays is lower than for γ-rays by a factor of 2. The contributions of direct and indirect effects to strand break induction are almost independent of photon energy. Strand break patterns from indirect effects reflect differences in the susceptibility of the DNA helix to OH attack inside the chromatin fibre. Distributions of small DNA fragments (<3 kbp) are determined by the chromatin fibre structure irrespective of whether direct or indirect effects are causing the breaks. In the calculated fragment size distributions for larger DNA fragments (>30 kbp), a substantial deviation from random breakage is found only for carbon K irradiation, and is attributed to its inhomogeneous dose distribution inside the cell nucleus. For the other radiation qualities, the results for larger fragments can be approximated by random breakage distributions calculated for a yield of dsb which is about 10% lower than the average for the whole genome. The excess of DNA fragments detected experimentally in the 8–300 kbp region after x-ray irradiation is not seen in our simulation results. Received: 19 October 1998 / Accepted in revised form: 14 January 1999  相似文献   

20.
Repair of potentially lethal damage (PLD) was investigated in a gamma-ray-sensitive Chinese hamster cell mutant, XR-1, and its parent by comparing survival of plateau-phase cells plated immediately after irradiation with cells plated after a delay. Previous work indicated that XR-1 cells are deficient in repair of double-strand DNA breaks and are gamma-ray sensitive in G1 but have near normal sensitivity and repair capacity in late S phase. At irradiation doses from 0 to 1.0 Gy (100 to 10% survival), the delayed- and immediate-plating survival curves of XR-1 cells were identical; however, at doses greater than 1.0 Gy a significant increase in survival was observed when plating was delayed (PLD repair), approaching a 20-fold increase at 8 Gy. Elimination of S-phase cells by [3H]thymidine suicide dramatically increased gamma-ray sensitivity of plateau-phase XR-1 mutant cells and reduced by 600-fold the number of cells capable of PLD repair after a 6-Gy dose. In contrast, elimination of S-phase cells in plateau-phase parental cells did not alter PLD repair. These results suggest that the majority of PLD repair observed in plateau-phase XR-1 cells occurs in S-phase cells while G1 cells perform little PLD repair. In contrast, G1 cells account for the majority of PLD repair in plateau-phase parental cells. Thus, in the XR-1 mutant, a cell's ability to repair PLD seems to depend upon the stage of the cell cycle at which the irradiation is delivered. A possible explanation for these findings is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号