首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies comparing binocular eye movements during reading and visual search in dyslexic children are, at our knowledge, inexistent. In the present study we examined ocular motor characteristics in dyslexic children versus two groups of non dyslexic children with chronological/reading age-matched. Binocular eye movements were recorded by an infrared system (mobileEBT®, e(ye)BRAIN) in twelve dyslexic children (mean age 11 years old) and a group of chronological age-matched (N = 9) and reading age-matched (N = 10) non dyslexic children. Two visual tasks were used: text reading and visual search. Independently of the task, the ocular motor behavior in dyslexic children is similar to those reported in reading age-matched non dyslexic children: many and longer fixations as well as poor quality of binocular coordination during and after the saccades. In contrast, chronological age-matched non dyslexic children showed a small number of fixations and short duration of fixations in reading task with respect to visual search task; furthermore their saccades were well yoked in both tasks. The atypical eye movement''s patterns observed in dyslexic children suggest a deficiency in the visual attentional processing as well as an immaturity of the ocular motor saccade and vergence systems interaction.  相似文献   

2.
Studies dealing with developmental aspects of binocular eye movement behaviour during reading are scarce. In this study we have explored binocular strategies during reading and during visual search tasks in a large population of normal young readers. Binocular eye movements were recorded using an infrared video-oculography system in sixty-nine children (aged 6 to 15) and in a group of 10 adults (aged 24 to 39). The main findings are (i) in both tasks the number of progressive saccades (to the right) and regressive saccades (to the left) decreases with age; (ii) the amplitude of progressive saccades increases with age in the reading task only; (iii) in both tasks, the duration of fixations as well as the total duration of the task decreases with age; (iv) in both tasks, the amplitude of disconjugacy recorded during and after the saccades decreases with age; (v) children are significantly more accurate in reading than in visual search after 10 years of age. Data reported here confirms and expands previous studies on children''s reading. The new finding is that younger children show poorer coordination than adults, both while reading and while performing a visual search task. Both reading skills and binocular saccades coordination improve with age and children reach a similar level to adults after the age of 10. This finding is most likely related to the fact that learning mechanisms responsible for saccade yoking develop during childhood until adolescence.  相似文献   

3.
Jainta S  Kapoula Z 《PloS one》2011,6(4):e18694
Reading requires three-dimensional motor control: saccades bring the eyes from left to right, fixating word after word; and oblique saccades bring the eyes to the next line of the text. The angle of vergence of the two optic axes should be adjusted to the depth of the book or screen and--most importantly--should be maintained in a sustained manner during saccades and fixations. Maintenance of vergence is important as it is a prerequisite for a single clear image of each word to be projected onto the fovea of the eyes. Deficits in the binocular control of saccades and of vergence in dyslexics have been reported previously but only for tasks using single targets. This study examines saccades and vergence control during real text reading. Thirteen dyslexic and seven non-dyslexic children read the French text "L'Allouette" in two viewing distances (40 cm vs. 100 cm), while binocular eye movements were measured with the Chronos Eye-tracking system. We found that the binocular yoking of reading saccades was poor in dyslexic children (relative to non-dyslexics) resulting in vergence errors; their disconjugate drift during fixations was not correlated with the disconjugacy during their saccades, causing considerable variability of vergence angle from fixation to fixation. Due to such poor oculomotor adjustments during reading, the overall fixation disparity was larger for dyslexic children, putting larger demand on their sensory fusion processes. Moreover, for dyslexics the standard deviation of fixation disparity was larger particularly when reading at near distance. We conclude that besides documented phoneme processing disorders, visual/ocular motor imperfections may exist in dyslexics that lead to fixation instability and thus, to instability of the letters or words during reading; such instability may perturb fusional processes and might--in part--complicate letter/word identification.  相似文献   

4.
Children with developmental dyslexia show reading impairment compared to their peers, despite being matched on IQ, socio-economic background, and educational opportunities. The neurological and cognitive basis of dyslexia remains a highly debated topic. Proponents of the magnocellular theory, which postulates abnormalities in the M-stream of the visual pathway cause developmental dyslexia, claim that children with dyslexia have deficient binocular coordination, and this is the underlying cause of developmental dyslexia. We measured binocular coordination during reading and a non-linguistic scanning task in three participant groups: adults, typically developing children, and children with dyslexia. A significant increase in fixation disparity was observed for dyslexic children solely when reading. Our study casts serious doubts on the claims of the magnocellular theory. The exclusivity of increased fixation disparity in dyslexics during reading might be a result of the allocation of inadequate attentional and/or cognitive resources to the reading process, or suboptimal linguistic processing per se.  相似文献   

5.
We present the results of investigation of visual perception (VP) and oculomotor activity during reading texts of various difficulties from the monitor screen in children 7–8 years of age. It has been shown that, at the initial stage of the development of the reading skill, morphological and psycholinguistic parameters of the text have no significant effect on the oculomotor activity. The degree of formation of VPand its structural components more clearly manifested in the first-graders in reading plain text and is not sufficient for a successful reading of the increased complexity of the text.  相似文献   

6.
The aim of this study was to investigate the state of binocular vision in first-year schoolchildren with high binocular visual acuity. The results have shown that only 5.1% of these children had normal binocular vision, whereas 25.7% of them had moderate impairments, and 67.9% had severe plus moderate impairments in binocular vision. Significant intergroup differences between schoolchildren with learning difficulties in reading and children with normal reading have been detected in the mean indicators for the distance of near-point of convergence (p < 0.001) and the visual behavior symptoms that confirmed binocular dysfunctions (p < 0.002).  相似文献   

7.
In everyday life, eye movements enable the eyes to gather the information required for motor actions. They are thus proactive, anticipating actions rather than just responding to stimuli. This means that the oculomotor system needs to know where to look and what to look for. Using examples from table tennis, driving and music reading we show that the information the eye movement system requires is very varied in origin and highly task specific, and it is suggested that the control program or schema for a particular action must include directions for the oculomotor and visual processing systems. In many activities (reading text and music, typing, steering) processed information is held in a memory buffer for a period of about a second. This permits a match between the discontinuous input from the eyes and continuous motor output, and in particular allows the eyes to be involved in more than one task.  相似文献   

8.
Several studies have shown that humans track a moving visual target with their eyes better if the movement of this target is directly controlled by the observer's hand. The improvement in performance has been attributed to coordination control between the arm motor system and the smooth pursuit (SP) system. In such a task, the SP system shows characteristics that differ from those observed during eye-alone tracking: latency (between the target-arm and the eye motion onsets) is shorter, maximum SP velocity is higher and the maximum target motion frequency at which the SP can function effectively is also higher. The aim of this article is to qualitatively evaluate the behavior of a dynamical model simulating the oculomotor system and the arm motor system when both are involved in tracking visual targets. The evaluation is essentially based on a comparison of the behavior of the model with the behavior of human subjects tracking visual targets under different conditions. The model has been introduced and quantitatively evaluated in a companion paper. The model is based on an exchange of internal information between the two sensorimotor systems, mediated by sensory signals (vision, arm muscle proprioception) and motor signals (arm motor command copy). The exchange is achieved by a specialized structure of the central nervous system, previously identified as a part of the cerebellum. Computer simulation of the model yielded results that fit the behavior of human subjects observed during previously reported experiments, both qualitatively and quantitatively. The parallelism between physiology and human behavior on the one hand, and structure and simulation of the model on the other hand, is discussed. Received: 6 March 1997 / Accepted in revised form: 15 July 1997  相似文献   

9.
The present study employs a stereoscopic manipulation to present sentences in three dimensions to subjects as they read for comprehension. Subjects read sentences with (a) no depth cues, (b) a monocular depth cue that implied the sentence loomed out of the screen (i.e., increasing retinal size), (c) congruent monocular and binocular (retinal disparity) depth cues (i.e., both implied the sentence loomed out of the screen) and (d) incongruent monocular and binocular depth cues (i.e., the monocular cue implied the sentence loomed out of the screen and the binocular cue implied it receded behind the screen). Reading efficiency was mostly unaffected, suggesting that reading in three dimensions is similar to reading in two dimensions. Importantly, fixation disparity was driven by retinal disparity; fixations were significantly more crossed as readers progressed through the sentence in the congruent condition and significantly more uncrossed in the incongruent condition. We conclude that disparity depth cues are used on-line to drive binocular coordination during reading.  相似文献   

10.
A low-cost, simple strip reader system using a linear movement mechanism of CD-ROM deck has been developed to characterize a lateral flow membrane-based immunochromatographic assay. The test strip reader was assembled by a CD-ROM deck and home-made optical head especially designed for immunoassays. The optical head for detecting reflected light from the test strip surface consists of green light-emitting diode, large area silicon photodiode, and anodized aluminum mounting block providing a slit structure for cutting light from the LED. The stepping motor of the deck was operated in the full step mode, whose distance of each reading point is about 0.15 mm. The performance of the strip reader was tested by analysis of HBV (hepatitis B virus) antigen test kit. This strip reader can be useful for inexpensive, disposable, and membrane-based assays that provide visual evidence of the presence of an analyte in a liquid sample.  相似文献   

11.
Saccadic eye movements and fixations are the behavioral means by which we visually sample text during reading. Human oculomotor control is governed by a complex neurophysiological system involving the brain stem, superior colliculus, and several cortical areas. A very widely held belief among researchers investigating primate vision is that the oculomotor system serves to orient the visual axes of both eyes to fixate the same target point in space. It is argued that such precise positioning of the eyes is necessary to place images on corresponding retinal locations, such that on each fixation a single, nondiplopic, visual representation is perceived. Vision works actively through a continual sampling process involving saccades and fixations. Here we report that during normal reading, the eyes do not always fixate the same letter within a word. We also demonstrate that saccadic targeting is yoked and based on a unified cyclopean percept of a whole word since it is unaffected if different word parts are delivered exclusively to each eye via a dichoptic presentation technique. These two findings together suggest that the visual signal from each eye is fused at a very early stage in the visual pathway, even when the fixation disparity is greater than one character (0.29 deg), and that saccade metrics for each eye are computed on the basis of that fused signal.  相似文献   

12.
A commonly used paradigm to study motor imagery is the hand laterality judgment task. The present study aimed to determine which strategies young children employ to successfully perform this task. Children of 5 to 8 years old (N = 92) judged laterality of back and palm view hand pictures in different rotation angles. Response accuracy and response duration were registered. Response durations of the trials with a correct judgment were fitted to a-priori defined predictive sinusoid models, representing different strategies to successfully perform the hand laterality judgment task. The first model predicted systematic changes in response duration as a function of rotation angle of the displayed hand. The second model predicted that response durations are affected by biomechanical constraints of hand rotation. If observed data could be best described by the first model, this would argue for a mental imagery strategy that does not involve motor processes to solve the task. The second model reflects a motor imagery strategy to solve the task. In line with previous research, we showed an age-related increase in response accuracy and decrease in response duration in children. Observed data for both back and palm view showed that motor imagery strategies were used to perform hand laterality judgments, but that not all the children use these strategies (appropriately) at all times. A direct comparison of response duration patterns across age sheds new light on age-related differences in the strategies employed to solve the task. Importantly, the employment of the motor imagery strategy for successful task performance did not change with age.  相似文献   

13.
Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to “spy” on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.  相似文献   

14.
We introduce decorrelation control as a candidate algorithm for the cerebellar microcircuit and demonstrate its utility for oculomotor plant compensation in a linear model of the vestibulo-ocular reflex (VOR). Using an adaptive-filter representation of cerebellar cortex and an anti-Hebbian learning rule, the algorithm learnt to compensate for the oculomotor plant by minimizing correlations between a predictor variable (eye-movement command) and a target variable (retinal slip), without requiring a motor-error signal. Because it also provides an estimate of the unpredicted component of the target variable, decorrelation control can simplify both motor coordination and sensory acquisition. It thus unifies motor and sensory cerebellar functions.  相似文献   

15.
The main objective of our research is characterization of various motor profiles among primary school age children. We examined 89 Moscow schoolchildren of 8-10 years old, not involved in sports. We analyzed 25 indices from psychomotor, psychophysiologic, posturography and locomotor testing during our research. Children were divided in 4 groups according to its motor coordination character similarity by applying cluster analysis (k-means method). Thereby we obtained 4 clusters which, as we suppose, can be identified as different types of motor coordination or "individual motor profiles" of 8-10 years old children. The results of our research shows that there are no significant differences in age, gender, body composition within clusters, thus it can be used during sport-selection process. The most typical features of 1st cluster representatives are: the ability to anticipate and a high wrist speed; the 2nd cluster representatives are more successful in rapid, rhythmic, automatic actions, based on a mechanism of intrinsic programming. Representatives of the 3rd cluster are notable for a low level of postural control, smooth, accurate and rhythmic arm actions based on a visual feedback, and advanced sense of tempo and space sense. Representatives of the 4th cluster shows highest level of development of coordination ability, which are significant for them in reaching results in various hard-coordination sports and labor activities.  相似文献   

16.
The goal of this study was to describe typical motor profiles in younger schoolchildren. A total of 89 subjects aged 8–10 years, students of primary schools of Moscow not going in for sports took part in the study. Twenty-five indices of psychophysiological (NS-PsihoTest), psychomotor (KID-3), posturography and locomotor tests (nine coordination tests) have been measured. According to their motor coordination, the children have been subdivided into groups using k-means cluster analysis. The four obtained clusters are supposed to reflect different types of motor coordination and correspond to four individual motor profiles typical of children aged 8–10 years. These motor coordination types were not associated with age, sex, or constitution; therefore, they may be promising for selecting sports. The ability to anticipate and a high speed of wrist movement were typical of children from the first cluster. Subjects from the second cluster were more successful in rapid, rhythmic, and automatic actions, based on the mechanism of intrinsic programming. Subjects from the third cluster displayed a moderate ability of postural control, but at the same time, they were characterized by smooth, accurate, and rhythmic arm actions based on visual feedback, and an advanced sense of rhythm and space sense. Subjects from the fourth cluster were the most coordinated ones, which is important for sports and occupational activities requiring a high level of coordination.  相似文献   

17.
18.
The aim of the study was to uncover mechanisms of central compensation of vestibular function at brainstem, cerebellar, and cortical levels in patients with acute unilateral midbrain infarctions presenting with an acute vestibular tone imbalance. Eight out of 17 patients with unilateral midbrain infarctions were selected on the basis of signs of a vestibular tone imbalance, e.g., graviceptive (tilts of perceived verticality) and oculomotor dysfunction (skew deviation, ocular torsion) in F18-fluordeoxyglucose (FDG)-PET at two time points: A) in the acute stage, and B) after recovery 6 months later. Lesion-behavior mapping analyses with MRI verified the exact structural lesion sites. Group subtraction analyses and comparisons with healthy controls were performed with Statistic Parametric Mapping for the PET data. A comparison of PET A of acute-stage patients with that of healthy controls showed increases in glucose metabolism in the cerebellum, motion-sensitive visual cortex areas, and inferior temporal lobe, but none in vestibular cortex areas. At the supratentorial level bilateral signal decreases dominated in the thalamus, frontal eye fields, and anterior cingulum. These decreases persisted after clinical recovery in contrast to the increases. The transient activations can be attributed to ocular motor and postural recovery (cerebellum) and sensory substitution of vestibular function for motion perception (visual cortex). The persisting deactivation in the thalamic nuclei and frontal eye fields allows alternative functional interpretations of the thalamic nuclei: either a disconnection of ascending sensory input occurs or there is a functional mismatch between expected and actual vestibular activity. Our data support the view that both thalami operate separately for each hemisphere but receive vestibular input from ipsilateral and contralateral midbrain integration centers. Normally they have gatekeeper functions for multisensory input to the cortex and automatic motor output to subserve balance and locomotion, as well as sensorimotor integration.  相似文献   

19.
Amblyopia is a visual disorder caused by an anomalous early visual experience. It has been suggested that suppression of the visual input from the weaker eye might be a primary underlying mechanism of the amblyopic syndrome. However, it is still an unresolved question to what extent neural responses to the visual information coming from the amblyopic eye are suppressed during binocular viewing. To address this question we measured event-related potentials (ERP) to foveal face stimuli in amblyopic patients, both in monocular and binocular viewing conditions. The results revealed no difference in the amplitude and latency of early components of the ERP responses between the binocular and fellow eye stimulation. On the other hand, early ERP components were reduced and delayed in the case of monocular stimulation of the amblyopic eye as compared to the fellow eye stimulation or to binocular viewing. The magnitude of the amblyopic effect measured on the ERP amplitudes was comparable to that found on the fMRI responses in the fusiform face area using the same face stimuli and task conditions. Our findings showing that the amblyopic effects present on the early ERP components in the case of monocular stimulation are not manifested in the ERP responses during binocular viewing suggest that input from the amblyopic eye is completely suppressed already at the earliest stages of visual cortical processing when stimuli are viewed by both eyes.  相似文献   

20.
Successful fish feeding often requires the coordination of several complex motor and sensory systems to ensure that food is accurately detected, approached, acquired, and consumed. In the present study, we address feeding behaviour as a coordinated set of multiple, facultatively independent, anatomical systems. We sought to determine whether the patterns of interaction between trophic, locomotor, and oculomotor systems are associated with changes in morphology and ecology within a closely-related, but trophically divergent, group of fishes. We present a quantitative kinematic analysis of skull motion, locomotor behaviour, and oculomotor responses during feeding to assess coordination in three functional systems directly involved in feeding. We use coordination profiles to depict the feeding behaviours of three carnivorous coral reef fishes of the tribe Cheilinini in the family Labridae (the wrasses): Cheilinus fasciatus (a slow-swimming predator of benthic invertebrates), Epibulus insidiator (a slow-stalking predator with extraordinary jaw protrusion), and Oxycheilinus digrammus (a fast-attack predator). Differences were detected in several variables relating to jaw, body, fin, and eye movements. Overall patterns of coordination were more similar between E. insidiator and O. digrammus , which are capable of capturing elusive prey, than between C. fasciatus and E. insidiator , which are the two most closely-related species among the three. Evidence for the evolution of coordination patterns among cheiline fishes suggests that the sensory-motor systems involved in processing stimuli and coordinating a physical response during feeding have changed considerably, even among closely-related species.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 289–308.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号