首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing evidence shows that the rostral agranular insular cortex (RAIC) is important in the modulation of nociception in humans and rats and that dopamine and GABA appear to be key neurotransmitters in the function of this cortical region. Here we use immunocytochemistry and path tracing to examine the relationship between dopamine and GABA related elements in the RAIC of the rat. We found that the RAIC has a high density of dopamine fibers that arise principally from the ipsilateral ventral tegmental area/substantia nigra (VTA/SN) and from a different set of neurons than those that project to the medial prefrontal cortex. Within the RAIC, there are close appositions between dopamine fibers and GABAergic interneurons. One target of cortical GABA appears to be a dense band of GABAB receptor-bearing neurons located in lamina 5 of the RAIC. The GABAB receptor-bearing neurons project principally to the amygdala and nucleus accumbens with few or no projections to the medial prefrontal cortex, cingulate gyrus, the mediodorsal thalamic nucleus or contralateral RAIC. The current anatomical data, together with previous behavioral results, suggest that part of the dopaminergic modulation of the RAIC occurs through GABAergic interneurons. GABA is able to exert specific effects through its action on GABAB receptor-bearing projection neurons that target a few subcortical limbic structures. Through these connections, dopamine innervation of the RAIC is likely to affect the motivational and affective dimensions of pain.  相似文献   

2.
GABAergic transmission in the amygdala modulates the expression of anxiety. Understanding the interplay between GABAergic transmission and excitatory circuits in the amygdala is, therefore, critical for understanding the neurobiological basis of anxiety. Here, we used a multi-disciplinary approach to demonstrate that GluR5-containing kainate receptors regulate local inhibitory circuits, modulate the excitatory transmission from the basolateral amygdala to the central amygdala, and control behavioral anxiety. Genetic deletion of GluR5 or local injection of a GluR5 antagonist into the basolateral amygdala increases anxiety-like behavior. Activation of GluR5 selectively depolarized inhibitory neurons, thereby increasing GABA release and contributing to tonic GABA current in the basolateral amygdala. The enhanced GABAergic transmission leads to reduced excitatory inputs in the central amygdala. Our results suggest that GluR5 is a key regulator of inhibitory circuits in the amygdala and highlight the potential use of GluR5-specific drugs in the treatment of pathological anxiety.  相似文献   

3.
Pape HC 《Neuron》2005,48(6):877-879
A hyperdopaminergic state, such as stress, is associated with an increase in affective behavior. In this issue of Neuron, Marowsky and colleagues identify two clusters of paracapsular intercalated GABA neurons in amygdala slice preparations of GAD67-GFP mice. These GABA neurons mediate inhibition from cortical afferents to both the major input and output station of the amygdala, are inhibited during action of dopamine via D1 receptors, and are thus likely to represent important cellular players during dopaminergic disinhibition related to increased affective behavior.  相似文献   

4.
Motilin is a 22-amino-acid gastrointestinal polypeptide that was first isolated from the porcine intestine. We identified that motilin receptor is highly expressed in GABAergic interneurons in the basolateral nucleus (BLA) of the amygdala, the structure of which is closely involved in assigning stress disorder and anxiety. However, little is known about the role of motilin in BLA neuronal circuits and the molecular mechanisms of stress-related anxiety. Whole-cell recordings from amygdala slices showed that motilin depolarized the interneurons and facilitated GABAergic transmission in the BLA, which is mimicked by the motilin receptor agonist, erythromycin. BLA local injection of erythromycin or motilin can reduce the anxiety-like behavior in mice after acute stress. Therefore, motilin is essential in regulating interneuron excitability and GABAergic transmission in BLA. Moreover, the anxiolytic actions of motilin can partly be explained by modulating the BLA neuronal circuits. The present data demonstrate the importance of motilin in anxiety and the development of motilin receptor non-peptide agonist as a clear target for the potential treatment of anxiety disorders.  相似文献   

5.
Medium spiny projection neurons (MSNs) are the main neuronal population in the neostriatum. MSNs are inhibitory and GABAergic. MSNs connect with other MSNs via local axon collaterals that produce lateral inhibition, which is thought to select cell assemblies for motor action. MSNs also receive inhibitory inputs from GABAergic local interneurons. This work shows, through the use of the paired pulse protocol, that somatostatin (SST) acts presynaptically to regulate GABA release from the terminals interconnecting MSNs. This SST action is reversible and not mediated through the release of dopamine. It is blocked by the SST receptor (SSTR) antagonist ciclosomatostatin (cicloSST). In contrast, SST does not regulate inhibition coming from interneurons. Because, SST is released by a class of local interneuron, it is concluded that this neuron helps to regulate the selection of motor acts. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

6.
The kainate subtype of glutamate receptors has received considerable attention in recent years, and a wealth of knowledge has been obtained regarding the function of these receptors. Kainate receptors have been shown to mediate synaptic transmission in some brain regions, modulate presynaptic release of glutamate and gamma-aminobutyric acid (GABA), and mediate synaptic plasticity or the development of seizure activity. This article focuses on the function of kainate receptors in the amygdala, a brain region that plays a central role in emotional behavior and certain psychiatric illnesses. Evidence is reviewed indicating that postsynaptic kainate receptors containing the glutamate receptor 5 kainate receptor (GLUk5) subunit are present on interneurons and pyramidal cells in the basolateral amygdala and mediate a component of the synaptic responses of these neurons to glutamatergic input. In addition, GLUk5-containing kainate receptors are present on presynaptic terminals of GABAergic neurons, where they modulate the release of GABA in an agonist concentration-dependent, bidirectional manner. GLUk5-containing kainate receptors also mediate a longlasting synaptic facilitation induced by low-frequency stimulation in the external capsule to the basolateral nucleus pathway, and they appear to be partly responsible for the susceptibility of the amygdala to epileptogenesis. Taken together, these findings have suggested a prominent role of GLUk5-containing kainate receptors in the regulation of neuronal excitability in the amygdala.  相似文献   

7.
Goldberg EM  Clark BD  Zagha E  Nahmani M  Erisir A  Rudy B 《Neuron》2008,58(3):387-400
Fast-spiking cells (FS cells) are a prominent subtype of neocortical GABAergic interneurons with important functional roles. Multiple FS cell properties are coordinated for rapid response. Here, we describe an FS cell feature that serves to gate the powerful inhibition produced by FS cell activity. We show that FS cells in layer 2/3 barrel cortex possess a dampening mechanism mediated by Kv1.1-containing potassium channels localized to the axon initial segment. These channels powerfully regulate action potential threshold and allow FS cells to respond preferentially to large inputs that are fast enough to "outrun" Kv1 activation. In addition, Kv1.1 channel blockade converts the delay-type discharge pattern of FS cells to one of continuous fast spiking without influencing the high-frequency firing that defines FS cells. Thus, Kv1 channels provide a key counterbalance to the established rapid-response characteristics of FS cells, regulating excitability through a unique combination of electrophysiological properties and discrete subcellular localization.  相似文献   

8.
The gamma-aminobutyric acid (GABA) antagonists bicuculline and picrotoxin stimulate a four- to fivefold increase in endogenous dopamine release from isolated intact carp retina. The release evoked by these agents is Ca2+ dependent, a finding suggesting a vesicular release. Using light microscopic autoradiography, we have localized the sites of dopamine release to the dopaminergic interplexiform cell processes of the outer plexiform layer, which synapse onto horizontal cells. Our findings support previous suggestions that the dopaminergic interplexiform cells receive GABAergic inhibitory input and that the effects of GABA antagonists on horizontal cells are mediated by dopamine release from the interplexiform cells.  相似文献   

9.
Alteration in the excitatory/inhibitory neuronal balance is believed to be the underlying mechanism of epileptogenesis. Based on this theory, GABAergic interneurons are regarded as the primary inhibitory neurons, whose failure of action permits hyperactivity in the epileptic circuitry. As a consequence, optogenetic excitation of GABAergic interneurons is widely used for seizure suppression. However, recent evidence argues for the context-dependent, possibly “excitatory” roles that GABAergic cells play in epileptic circuitry. We reviewed current optogenetic approaches that target the “inhibitory” roles of GABAergic interneurons for seizure control. We also reviewed interesting evidence that supports the “excitatory” roles of GABAergic interneurons in epileptogenesis. GABAergic interneurons can provide excitatory effects to the epileptic circuits via several distinct neurological mechanisms. (1) GABAergic interneurons can excite postsynaptic neurons, due to the raised reversal potential of GABA receptors in the postsynaptic cells. (2) Continuous activity in GABAergic interneurons could lead to transient GABA depletion, which prevents their inhibitory effect on pyramidal cells. (3) GABAergic interneurons can synchronize network activity during seizure. (4) Some GABAergic interneurons inhibit other interneurons, causing disinhibition of pyramidal neurons and network hyperexcitability. The dynamic, context-dependent role that GABAergic interneurons play in seizure requires further investigation of their functions at single cell and circuitry level. New optogenetic protocols that target GABAergic inhibition should be explored for seizure suppression.  相似文献   

10.
The hatchling frog tadpole provides a simple preparation where the fundamental roles for inhibition in the central nervous networks controlling behaviour can be examined. Antibody staining reveals the distribution of at least ten different populations of glycinergic and GABAergic neurons in the CNS. Single neuron recording and marker injections have been used to study the roles and anatomy of three types of inhibitory neuron in the swimming behaviour of the tadpole. Spinal commissural interneurons control alternation of the two sides by producing glycinergic reciprocal inhibition. By interacting with the special membrane properties of excitatory interneurons they also contribute to rhythm generation through post-inhibitory rebound. Spinal ascending interneurons produce recurrent glycinergic inhibition of sensory pathways that gates reflex responses during swimming. In addition their inhibition also limits firing in CPG neurons during swimming. Midhindbrain reticulospinal neurons are excited by pressure to the head and produce powerful GABAergic inhibition that stops swimming when the tadpole swims into solid objects. They may also produce tonic inhibition while the tadpole is at rest that reduces spontaneous swimming and responsiveness of the tadpole, keeping it still so it is not noticed by predators.  相似文献   

11.
G A Cohen  V A Doze  D V Madison 《Neuron》1992,9(2):325-335
Opiates and the opioid peptide enkephalin can cause indirect excitation of principal cortical neurons by reducing inhibitory synaptic transmission mediated by GABAergic interneurons. The mechanism by which opioids mediate these effects on interneurons is unknown, but enkephalin hyperpolarizes the somatic membrane potential of a variety of neurons in the brain, including hippocampal interneurons. We now report a new, more direct mechanism for the opioid-mediated reduction in synaptic inhibition. The enkephalin analog D-Ala2-Met5-enkephalinamide (DALA) decreases the frequency of miniature, action potential-independent, spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) without causing a change in their amplitude. Thus, we conclude that DALA inhibits the action potential-independent release of GABA through a direct action on interneuronal synaptic terminals. In contrast, DALA reduces the amplitude of action potential-evoked, GABA-mediated IPSCs, as well as decreases their frequency. This suggests that the opioid-mediated inhibition of non-action potential-dependent GABA release reveals a mechanism that contributes to reducing action potential-evoked GABA release, thereby decreasing synaptic inhibition.  相似文献   

12.
We have performed intrastriatal injection of thrombin and searched for distant effects in the cell body region. In striatum, thrombin produced a slight loss of striatal neurons as demonstrated by neural nuclei immunostaining – a non-specific neuronal marker – and the expression of glutamic acid decarboxylase 67 mRNA, a specific marker for striatal GABAergic interneurons, the most abundant phenotype in this brain area. Interestingly, striatal neuropil contained many boutons immunostained for synaptic vesicle protein 2 and synaptophysin which colocalize with tyrosine hydroxylase (TH), suggesting a degenerative process with pre-synaptic accumulation of synaptic vesicles. When we studied the effects on substantia nigra, we found the disappearance of dopaminergic neurons, shown by loss of TH immunoreactivity, loss of expression of TH and dopamine transporter mRNAs, and disappearance of FluoroGold-labelled nigral neurons. The degeneration of substantia nigra dopaminergic neurons was produced through up-regulation of cFos mRNA, apoptosis and accumulation of α-synuclein shown by colocalization experiments. Thrombin effects could be mediated by protease-activated receptor 4 activation, as protease-activated receptor 4-activating peptide mimicked thrombin effects. Our results point out the possible relationship between synapse elimination and retrograde degeneration in the nigral dopaminergic system.  相似文献   

13.
Dopaminergic innervation of the amygdala is highly responsive to stress   总被引:6,自引:0,他引:6  
The amygdala has been implicated in the neuronal sequelae of stress, although little is known about the neurochemical mechanisms underlying amygdala transmission. In vivo microdialysis was employed to measure extracellular levels of dopamine in the basolateral nucleus of the amygdala in awake rats. Once it was established that impulse-dependent release of dopamine could be measured reliably in the amygdala, the effect of stress, induced by mild handling, on amygdala dopamine release was compared with that in three other dopamine-innervated regions, the medial prefrontal cortex, nucleus accumbens, and caudate nucleus. The magnitude of increase in dopamine in response to the handling stimulus was significantly greater in the amygdala than in the nucleus accumbens and prefrontal cortex. This increase was maximal during the application of stress and diminished after the cessation of stress. In contrast, the increases in extracellular dopamine levels in other regions, in particular the nucleus accumbens, were prolonged, reaching maximal values after the cessation of stress. These results suggest that dopaminergic innervation of the amygdala may be more responsive to stress than that of other dopamine-innervated regions of the limbic system, including the prefrontal cortex, and implicate amygdalar dopamine in normal and pathophysiological processes subserving an organism's response to stress.  相似文献   

14.
Neuronal synchrony in the basolateral amygdala (BLA) is critical for emotional behavior. Coordinated theta-frequency oscillations between the BLA and the hippocampus and precisely timed integration of?salient sensory stimuli in the BLA are involved in?fear conditioning. We characterized GABAergic interneuron types of the BLA and determined their contribution to shaping these network activities. Using in?vivo recordings in rats combined with the anatomical identification of neurons, we found that the firing of BLA interneurons associated with network activities was cell type specific. The firing of calbindin-positive interneurons targeting dendrites was precisely theta-modulated, but other cell types were heterogeneously modulated, including parvalbumin-positive basket cells. Salient sensory stimuli selectively triggered axo-axonic cells firing and inhibited firing of a disctinct projecting interneuron type. Thus, GABA is released onto BLA principal neurons in a time-, domain-, and sensory-specific manner. These specific synaptic actions likely cooperate to promote amygdalo-hippocampal synchrony involved in emotional memory formation.  相似文献   

15.
If the classical functional attribute of cortical GABAergic interneurons is to mediate synaptic inhibition in the adult cortex, it is becoming evident that their major task is instead to shape the spatio-temporal dynamics of the network oscillations that support most brain functions. This complex function involves a division of labour between morpho-physiologically diverse interneuron subtypes. Both the central network function and the bewildering heterogeneity of the interneuron population are especially emphasized during cortical development: at early postnatal stages, a single GABAergic neuron can efficiently pace the activity of hundreds of other cells, whereas some interneuron subtypes are still poorly developed. Given the role of coherent activity in brain development, this confers to GABAergic interneurons a major role in the proper maturation of cortical networks.  相似文献   

16.
Activation of the amygdala is one of the hallmarks of acute stress reactions and a central element of the negative impact of stress on hippocampus-dependent memory and cognition. Stress-induced psychopathologies, such as posttraumatic stress disorder, exhibit a sustained hyperactivity of the amygdala, triggered at least in part by deficits in GABAergic inhibition that lead to shifts in amygdalo-hippocampal interaction. Here, we have utilized lentiviral knock down of neurofascin to reduce GABAergic inhibition specifically at the axon initial segment (AIS) of principal neurons within the basolateral amygdala (BLA) of rats. Metaplastic effects of such a BLA modulation on hippocampal synaptic function were assessed using BLA priming prior to the induction of long-term potentiation (LTP) on dentate gyrus synapses in anesthetized rats in vivo. The knock down of neurofascin in the BLA prevented a priming-induced impairment on LTP maintenance in the dentate gyrus. At the behavioral level, a similar effect was observable, with neurofascin knock down preventing the detrimental impact of acute traumatic stress on hippocampus-dependent spatial memory retrieval in a water maze task. These findings suggest that reducing GABAergic inhibition specifically at the AIS synapses of the BLA alters amygdalo-hippocampal interactions such that it attenuates the adverse impact of acute stress exposure on cognition-related hippocampal functions.  相似文献   

17.
Kainate receptor (KAR) subunits are believed to be involved in abnormal GABAergic neurotransmission in the hippocampus (HIPP) in schizophrenia (SZ) and bipolar disorder. Postmortem studies have shown changes in the expression of the GluR5/6 subunits of KARs in the stratum oriens (SO) of sectors CA2/3, where the basolateral amygdala (BLA) sends a robust projection. Previous work using a rat model of SZ demonstrated that BLA activation leads to electrophysiological changes in fast-spiking interneurons in SO of CA2/3. The present study explores KAR modulation of interneurons in CA2/3 in response to BLA activation. Intrinsic firing properties of these interneurons through KAR-mediated activity were measured with patch-clamp recordings from rats that received 15 days of picrotoxin infusion into the BLA. Chronic BLA activation induced changes in the firing properties of CA2/3 interneurons associated with modifications in the function of KARs. Specifically, the responsiveness of these interneurons to activation of KARs was diminished in picrotoxin-treated rats, while the after-hyperpolarization (AHP) amplitude was increased. In addition, we tested blockers of KAR subunits which have been shown to have altered gene expression in SO sector CA2/3 of SZ subjects. The GluR5 antagonist UBP296 further decreased AP frequency and increased AHP amplitude in picrotoxin-treated rats. Application of the GluR6/7 antagonist NS102 suggested that activation of GluR6/7 KARs may be required to maintain the high firing rates in SO interneurons in the presence of KA. Moreover, the GluR6/7 KAR-mediated signaling may be suppressed in PICRO-treated rats. Our findings indicate that glutamatergic activity from the BLA may modulate the firing properties of CA2/3 interneurons through GluR5 and GluR6/7 KARs. These receptors are expressed in GABAergic interneurons and play a key role in the synchronization of gamma oscillations. Modulation of interneuronal activity through KARs in response to amygdala activation may lead to abnormal oscillatory rhythms reported in SZ subjects.  相似文献   

18.
19.
In the cerebellar cortex, interneurons of the molecular layer (stellate and basket cells) provide GABAergic input to Purkinje cells, as well as to each other and possibly to other interneurons. GABAergic inhibition in the molecular layer has mainly been investigated at the interneuron to Purkinje cell synapse. In this study, we used complementary subtractive strategies to quantitatively assess the ratio of GABAergic synapses on Purkinje cell dendrites versus those on interneurons. We generated a mouse model in which the GABAA receptor α1 subunit (GABAARα1) was selectively removed from Purkinje cells using the Cre/loxP system. Deletion of the α1 subunit resulted in a complete loss of GABAAR aggregates from Purkinje cells, allowing us to determine the density of GABAAR clusters in interneurons. In a complementary approach, we determined the density of GABA synapses impinging on Purkinje cells using α-dystroglycan as a specific marker of inhibitory postsynaptic sites. Combining these inverse approaches, we found that synapses received by interneurons represent approximately 40% of all GABAergic synapses in the molecular layer. Notably, this proportion was stable during postnatal development, indicating synchronized synaptogenesis. Based on the pure quantity of GABAergic synapses onto interneurons, we propose that mutual inhibition must play an important, yet largely neglected, computational role in the cerebellar cortex.  相似文献   

20.
Stress during childhood and adolescence is a risk factor for psychopathology. Alterations in γ-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the brain, have been found following stress exposure and fear experiences and are often implicated in anxiety and mood disorders. Abnormal amygdala functioning has also been detected following stress exposure and is also implicated in anxiety and social disorders. However, the amygdala is not a unitary structure; it includes several nuclei with different functions and little is known on the potential differences the impact of early life stress may have on this system within different amygdaloid nuclei. We aimed here to evaluate potential regional differences in the expression of GABAergic-related markers across several amygdaloid nuclei in adult rats subjected to a peripuberty stress protocol that leads to enhanced basal amygdala activity and psychopathological behaviors. More specifically, we investigated the protein expression levels of glutamic acid decarboxylase (GAD; the principal synthesizing enzyme of GABA) and of GABA-A receptor subunits α2 and α3. We found reduced GAD and GABA-A α3, but not α2, subunit protein levels throughout all the amygdala nuclei examined (lateral, basolateral, basomedial, medial and central) and increased anxiety-like behaviors and reduced sociability in peripubertally stressed animals. Our results identify an enduring inhibition of the GABAergic system across the amygdala following exposure to early adversity. They also highlight the suitability of the peripuberty stress model to investigate the link between treatments targeting the dysfunctional GABAergic system in specific amygdala nuclei and recovery of specific stress-induced behavioral dysfunctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号