首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mouse mammary tumor virus (MMTV) is a slowly transforming retrovirus associated primarily with the induction of mammary tumors. It is widely accepted that T-cell lymphomas of various mouse strains are associated with extra proviruses of MMTV. These extra proviruses showed site-specific rearrangements in the U3 region of long terminal repeats (LTRs), consisting of about 400 nucleotide deletions and occasional substitution resulting in unique tandem repeats. However, the question of whether these mutant MMTVs cause lymphomas has not been experimentally resolved. Here we present distinct evidence that they do. We constructed chimeric MMTVs by replacing the LTR of the recently constructed pathogenic MMTV provirus clone with rearranged LTRs of MMTV proviruses obtained from two DBA/2 mouse lymphoma cell lines, MLA and DL-8, and inoculated them into BALB/c mice. These mice developed lymphomas, but no mammary tumors, 4 to 11 months postinoculation, whereas the original pathogenic MMTV clone alone induced mammary tumors. These results showed that the tissue specificity of MMTV tumorigenesis is determined by the LTR structures.  相似文献   

3.
Male GR mice develop T-cell leukemia at low frequency late in life. These leukemia cells invariably contain large amounts of mouse mammary tumor virus (MMTV) RNA and MMTV proteins and have extra MMTV proviruses integrated in their DNA. We show here that the extra MMTV proviruses are all derived from the endogenous MMTV provirus associated with the Mtv-2 locus and that the T-cell leukemias are clonal with respect to the acquired MMTV proviruses. The extra MMTV proviruses in six transplantable T-cell leukemia lines studied had rearranged, shortened long terminal repeats (LTRs); each T-cell leukemia, however, had a different LTR rearrangement within its extra MMTV provirus. The alteration within the extra LTRs of T-cell leukemia line 42 involved deletion of 453 nucleotides and generation of a tandem repeat region consisting of regions flanking the deletion. This alteration generated a sequence similar to the adenovirus enhancer core sequence. The viral RNAs in the T-cell leukemias contained corresponding alterations in their U3 regions. These results demonstrate that expression of MMTV in T-cell leukemias of GR mice may be the consequence of the generation of a novel enhancer, which could also stimulate expression of any adjacent cellular oncogene.  相似文献   

4.
Deletional analysis within the long terminal repeat (LTR) of Moloney murine leukemia virus (M-MuLV) was performed. By molecular cloning, deletions were made in the vicinity of the XbaI site at -150 base pairs (bp) in the U3 region, between the tandemly repeated enhancers and the TATA box. The effects of the deletions on LTR function were measured in two ways. First, deleted LTRs were fused to the bacterial chloramphenicol acetyltransferase gene and used in transient expression assays. Second, infectious M-MuLVs were generated by transfection of M-MuLV proviruses containing the deleted LTRs, and the relative infectivity of the mutant viruses was assessed by XC-syncytial assay. Most of the deleted LTRs examined showed relatively high promoter activity in the transient chloramphenicol acetyltransferase assays, with values ranging from 20 to 50% of the wild-type M-MuLV LTR. Thus, the sequences between the enhancers and the TATA box were not absolutely required for transient expression. However, infectivity of viruses carrying the same deleted LTRs showed more pronounced effects. Deletion of sequences from -195 to -174 bp reduced infectivity 20- to 100-fold. Deletion of sequences within the region from -174 to -122 bp did not affect infectivity, indicating that this region is dispensable. On the other hand, deletion of sequences from -150 to -40 bp reduced infectivity from 5 to 6 logs, although the magnitude of the reduction partly may have reflected threshold envelope protein requirements for positive XC assays. The reduced infectivity did not appear to result from a failure of proviral DNA synthesis or integration by the mutant. Thus, the infectivity measurements identified three functional domains in the region between the enhancers and the TATA box.  相似文献   

5.
6.
The glucocorticoid-regulatory sequences from the murine mammary tumor virus long terminal repeat (MMTV LTR) were introduced into the LTR of Moloney murine leukemia virus (M-MuLV) by recombinant DNA techniques. The site of insertion was in the M-MuLV LTR U3 region at -150 base pairs with respect to the RNA cap site. Infectious M-MuLVs carrying the altered LTRs (Mo + MMTV M-MuLVs) were recovered by transfection of proviral clones into NIH-3T3 cells. The Mo + MMTV M-MuLVs were hormonally responsive in that infection was 3 logs more efficient when performed in the presence of dexamethasone, irrespective of the orientation of the inserted MMTV sequences. However, even in the presence of hormone, the Mo + MMTV M-MuLVs were less infectious than wild-type M-MuLV. In contrast to the large effect on infectivity, dexamethasone induced virus-specific RNA levels in chronically Mo + MMTV M-MuLV-infected cells only two- to fourfold. Fusion plasmids between the altered LTRs and the bacterial chloramphenicol acetyltransferase gene allowed the investigation of LTR promoter strength by the transient chloramphenicol acetyltransferase expression assay. The chloramphenicol acetyltransferase assays indicated that the insertion of MMTV sequences into the M-MuLV LTR reduced promoter activity in the absence of glucocorticoids but that promoter activity could be induced two- to fivefold by dexamethasone. The Mo + MMTV M-MuLVs were also tested for the possibility that viral DNA synthesis or integration during initial infection was enhanced by dexamethasone. However, no significant difference was detected between cultures infected in the presence or absence of hormone. The insertion of MMTV sequences into an M-MuLV LTR deleted of its enhancer sequences did not yield infectious virus or active promoters, even in the presence of dexamethasone.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Five mouse mammary tumor virus proviruses and their flanking cellular DNA sequences have been cloned from a transplanted C57BL/6 (B6) T-cell lymphoma containing additional copies of mouse mammary tumor virus DNA. Characterization of these proviruses and their flanking DNA indicates that B6 lymphomas contain many newly integrated mouse mammary tumor virus copies synthesized by a mechanism(s) which generates polymorphism or deletions or both.  相似文献   

18.
Type B leukemogenic virus (TBLV) is a variant of mouse mammary tumor virus (MMTV) that causes T-cell lymphomas in mice. We have constructed a TBLV-MMTV hybrid, pHYB-TBLV, in which 756 bp of the C3H MMTV long terminal repeat (LTR) was replaced with 438 bp of the TBLV LTR. Intraperitoneal injection of pHYB-TBLV transfectants consistently resulted in T-cell lymphomas in 50% of injected weanling BALB/c mice with an average latency period of 5.7 (+/- 1.5) months. Transfectants of pHYB-TBLV containing a double-frameshift mutation in the truncated superantigen gene (sag) induced T-cell lymphomas with similar incidences, latency periods, and phenotypes, suggesting that cis-acting elements in the TBLV LTR determine disease specificity.  相似文献   

19.
The DNA of lymphomas from 12 AKXD recombinant inbred mouse strains was analyzed to determine the presence of somatically acquired ecotropic and mink cell focus-forming proviruses. Mink cell focus-forming proviruses were associated primarily with T-cell lymphomas, whereas ecotropic proviruses were associated with lymphomas of B-cell and myeloid lineages. A model based on the results is proposed to explain the variation in lymphoma types observed in different AKXD strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号