共查询到20条相似文献,搜索用时 15 毫秒
1.
The perception of music depends on many culture-specific factors, but is also constrained by properties of the auditory system. This has been best characterized for those aspects of music that involve pitch. Pitch sequences are heard in terms of relative as well as absolute pitch. Pitch combinations give rise to emergent properties not present in the component notes. In this review we discuss the basic auditory mechanisms contributing to these and other perceptual effects in music. 相似文献
2.
The strong association between music and speech has been supported by recent research focusing on musicians' superior abilities in second language learning and neural encoding of foreign speech sounds. However, evidence for a double association--the influence of linguistic background on music pitch processing and disorders--remains elusive. Because languages differ in their usage of elements (e.g., pitch) that are also essential for music, a unique opportunity for examining such language-to-music associations comes from a cross-cultural (linguistic) comparison of congenital amusia, a neurogenetic disorder affecting the music (pitch and rhythm) processing of about 5% of the Western population. In the present study, two populations (Hong Kong and Canada) were compared. One spoke a tone language in which differences in voice pitch correspond to differences in word meaning (in Hong Kong Cantonese, /si/ means 'teacher' and 'to try' when spoken in a high and mid pitch pattern, respectively). Using the On-line Identification Test of Congenital Amusia, we found Cantonese speakers as a group tend to show enhanced pitch perception ability compared to speakers of Canadian French and English (non-tone languages). This enhanced ability occurs in the absence of differences in rhythmic perception and persists even after relevant factors such as musical background and age were controlled. Following a common definition of amusia (5% of the population), we found Hong Kong pitch amusics also show enhanced pitch abilities relative to their Canadian counterparts. These findings not only provide critical evidence for a double association of music and speech, but also argue for the reconceptualization of communicative disorders within a cultural framework. Along with recent studies documenting cultural differences in visual perception, our auditory evidence challenges the common assumption of universality of basic mental processes and speaks to the domain generality of culture-to-perception influences. 相似文献
3.
4.
Background
Understanding the time course of how listeners reconstruct a missing fundamental component in an auditory stimulus remains elusive. We report MEG evidence that the missing fundamental component of a complex auditory stimulus is recovered in auditory cortex within 100 ms post stimulus onset.Methodology
Two outside tones of four-tone complex stimuli were held constant (1200 Hz and 2400 Hz), while two inside tones were systematically modulated (between 1300 Hz and 2300 Hz), such that the restored fundamental (also knows as “virtual pitch”) changed from 100 Hz to 600 Hz. Constructing the auditory stimuli in this manner controls for a number of spectral properties known to modulate the neuromagnetic signal. The tone complex stimuli only diverged on the value of the missing fundamental component.Principal Findings
We compared the M100 latencies of these tone complexes to the M100 latencies elicited by their respective pure tone (spectral pitch) counterparts. The M100 latencies for the tone complexes matched their pure sinusoid counterparts, while also replicating the M100 temporal latency response curve found in previous studies.Conclusions
Our findings suggest that listeners are reconstructing the inferred pitch by roughly 100 ms after stimulus onset and are consistent with previous electrophysiological research suggesting that the inferential pitch is perceived in early auditory cortex. 相似文献5.
6.
7.
In vivo voltage clamp recordings have provided new insights into the synaptic mechanisms that underlie processing in the primary auditory cortex. Of particular importance are the discoveries that excitatory and inhibitory inputs have similar frequency and intensity tuning, that excitation is followed by inhibition with a short delay, and that the duration of inhibition is briefer than expected. These findings challenge existing models of auditory processing in which broadly tuned lateral inhibition is used to limit excitatory receptive fields and suggest new mechanisms by which inhibition and short term plasticity shape neural responses. 相似文献
8.
An fMRI experiment was performed to identify the main stages of melody processing in the auditory pathway. Spectrally matched sounds that produce no pitch, fixed pitch, or melody were all found to activate Heschl's gyrus (HG) and planum temporale (PT). Within this region, sounds with pitch produced more activation than those without pitch only in the lateral half of HG. When the pitch was varied to produce a melody, there was activation in regions beyond HG and PT, specifically in the superior temporal gyrus (STG) and planum polare (PP). The results support the view that there is hierarchy of pitch processing in which the center of activity moves anterolaterally away from primary auditory cortex as the processing of melodic sounds proceeds. 相似文献
9.
Hsiao S 《Current opinion in neurobiology》2008,18(4):418-424
Studies show that while the cortical mechanisms of two-dimensional (2D) form and motion processing are similar in touch and vision, the mechanisms of three-dimensional (3D) shape processing are different. 2D form and motion are processed in areas 3b and 1 of SI cortex by neurons with receptive fields (RFs) composed of excitatory and inhibitory subregions. 3D shape is processed in area 2 and SII and relies on the integration of cutaneous and proprioceptive inputs. The RFs of SII neurons vary in size and shape with heterogeneous structures consisting of orientation-tuned fingerpads mixed with untuned excitatory or inhibitory fingerpads. Furthermore, the sensitivity of the neurons to cutaneous inputs changes with hand conformation. We hypothesize that these RFs are the kernels underlying tactile object recognition. 相似文献
10.
11.
Plaisted K Saksida L Alcántara J Weisblatt E 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2003,358(1430):375-386
The weak central coherence hypothesis of Frith is one of the most prominent theories concerning the abnormal performance of individuals with autism on tasks that involve local and global processing. Individuals with autism often outperform matched nonautistic individuals on tasks in which success depends upon processing of local features, and underperform on tasks that require global processing. We review those studies that have been unable to identify the locus of the mechanisms that may be responsible for weak central coherence effects and those that show that local processing is enhanced in autism but not at the expense of global processing. In the light of these studies, we propose that the mechanisms which can give rise to 'weak central coherence' effects may be perceptual. More specifically, we propose that perception operates to enhance the representation of individual perceptual features but that this does not impact adversely on representations that involve integration of features. This proposal was supported in the two experiments we report on configural and feature discrimination learning in high-functioning children with autism. We also examined processes of perception directly, in an auditory filtering task which measured the width of auditory filters in individuals with autism and found that the width of auditory filters in autism were abnormally broad. We consider the implications of these findings for perceptual theories of the mechanisms underpinning weak central coherence effects. 相似文献
12.
When experiencing spatially disparate visual and auditory stimuli, a common percept is that the sound originates from the location of the visual stimulus, an illusion known as the ventriloquism effect. This illusion can persist for tens of minutes, a phenomenon termed the ventriloquism aftereffect. The underlying neuronal mechanisms of this rapidly induced plasticity remain unclear; indeed, it remains untested whether similar multimodal interactions occur in other species. We therefore tested whether macaque monkeys experience the ventriloquism aftereffect similar to the way humans do. The ability of two monkeys to determine which side of the midline a sound was presented from was tested before and after a period of 20-60 min in which the monkeys experienced either spatially identical or spatially disparate auditory and visual stimuli. In agreement with human studies, the monkeys did experience a shift in their auditory spatial perception in the direction of the spatially disparate visual stimulus, and the aftereffect did not transfer across sounds that differed in frequency by two octaves. These results show that macaque monkeys experience the ventriloquism aftereffect similar to the way humans do in all tested respects, indicating that these multimodal interactions are a basic phenomenon of the central nervous system. 相似文献
13.
14.
The spatial distortion hypothesis is one of several theories that explain certain aspects of neglect in patients with right
parietal lesions. To determine whether a distorted representation of space can account for the performance of neglect patients
in different visuospatial tasks, we asked 26 neglect patients to: (1) bisect horizontal lines and (2) to compare the width
of two horizontally aligned bars. A simple mathematical model compatible with the idea of a stationary distortion of represented
space in egocentric coordinates explained the results of the line-bisection task. A second model that had basically the same
structure and was compatible with the idea of a distorted egocentric representation based on a dynamic remapping of space
approximated the size-comparison data. These results support the view that abnormalities observed in the line-bisection and
size-comparison tasks are due to a distorted internal representation of the external world. Certain findings suggest that
this distortion could be based on a dynamic mapping of space determined by the distribution of visuospatial attention.
Received: 14 June 1999 / Accepted in revised form: 30 May 2001 相似文献
15.
错觉轮廓或主观边框是指人们知觉到的刺激图案中实际上并不存在的轮廓、线、边或面。在人们的视觉系统将视网膜平面上的二维图像还原成三维的过程中,错觉轮廓笑觉起着一定的作用。本文综述了近年来在生理学领域对视觉皮层ICs反应细胞的研究和由此提出的ICs知觉的可能神经机制,并简述了心理学上对ICs相关研究。 相似文献
16.
Wilson RI 《Current opinion in neurobiology》2008,18(4):408-412
Recent in vivo and in vitro studies have challenged existing models of olfactory processing in the vertebrate olfactory bulb and insect antennal lobe. Whereas lateral connectivity between olfactory glomeruli was previously thought to form a dense, topographically organized inhibitory surround, new evidence suggests that lateral connections may be sparse, nontopographic, and partly excitatory. Other recent studies highlight the role of active sensing (sniffing) in shaping odor-evoked neural activity and perception. 相似文献
17.
To investigate how the high pitched notes in a musical score are played on the piccolo, nine flutists produced tones of a C major scale, from C6 to C8, using their own piccolo. The fundamental frequency of each tone was measured. The results showed that all tones were produced higher in frequency than the theoretical values and that this tendency was striking in the higher frequency range. This phenomenon is discussed in terms of temporal responses of auditory nerve fibers. 相似文献
18.
Motion is a potent sub-modality of vision. Motion cues alone can be used to segment images into figure and ground and break camouflage. Specific patterns of motion support vivid percepts of form, guide locomotion by specifying directional heading and the passage of objects, and in case of an impending collision, the time to impact. Visual motion also drives smooth pursuit eye movements (SPEMs) that serve to stabilize the retinal image of objects in motion. In contrast, the auditory system does not appear to be particularly sensitive to motion. We review the ambiguous status of auditory motion processing from the psychophysical and electrophysiological perspectives. We then report the results of two experiments that use ocular tracking performance as an objective measure of the perception of auditory motion in humans. We examine ocular tracking of auditory motion, visual motion, combined auditory + visual motion and imagined motion in both the frontal plane and in depth. The results demonstrate that ocular tracking of auditory motion is no better than ocular tracking of imagined motion. These results are consistent with the suggestion that, unlike the visual system, the human auditory system is not endowed with low-level motion sensitive elements. We hypothesize however, that auditory information may gain access to a recently described high-level motion processing system that is heavily dependent on 'top-down' influences, including attention. 相似文献
19.
Shim K 《The international journal of biochemistry & cell biology》2006,38(11):1827-1833
The auditory sensory epithelium is the specialized region of the cochlear epithelium that transduces sound. It is composed of a highly ordered, repeated array of mechanosensory hair cells and nonsensory supporting cells that run along the length of the cochlea. On the apical surface of the hair cells is a specialized structure called the hair bundle that deflects in response to sound vibration, resulting in depolarization of the hair cell and neurotransmitter release. Formation of the auditory sensory epithelium during embryogenesis involves strict control of both cell proliferation and cell patterning. Misregulation of these events can lead to congenital hearing loss, and damage to the auditory sensory epithelium during adult life can lead to adult-onset deafness. This paper reviews recent data on the formation of the auditory sensory epithelium during embryogenesis, the identification of components of the sound transduction apparatus, and advances in the treatment of hearing impairment. 相似文献