首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In the voltage-gated ion channels of every animal, whether they are selective for K+, Na+ or Ca2+, the voltage sensors are the S4 transmembrane segments carrying four to eight positive charges always separated by two uncharged residues. It is proposed that they move across the membrane in a screw-helical fashion in a series of three or more steps that each transfer a single electronic charge. The unit steps are stabilized by ion pairing between the mobile positive charges and fixed negative charges, of which there are invariably two located near the inner ends of segments S2 and S3 and a third near the outer end of either S2 or S3. Opening of the channel involves three such steps in each domain.  相似文献   

3.
Block of sodium ionic current by lidocaine is associated with alteration of the gating charge-voltage (Q-V) relationship characterized by a 38% reduction in maximal gating charge (Q(max)) and by the appearance of additional gating charge at negative test potentials. We investigated the molecular basis of the lidocaine-induced reduction in cardiac Na channel-gating charge by sequentially neutralizing basic residues in each of the voltage sensors (S4 segments) in the four domains of the human heart Na channel (hH1a). By determining the relative reduction in the Q(max) of each mutant channel modified by lidocaine we identified those S4 segments that contributed to a reduction in gating charge. No interaction of lidocaine was found with the voltage sensors in domains I or II. The largest inhibition of charge movement was found for the S4 of domain III consistent with lidocaine completely inhibiting its movement. Protection experiments with intracellular MTSET (a charged sulfhydryl reagent) in a Na channel with the fourth outermost arginine in the S4 of domain III mutated to a cysteine demonstrated that lidocaine stabilized the S4 in domain III in a depolarized configuration. Lidocaine also partially inhibited movement of the S4 in domain IV, but lidocaine's most dramatic effect was to alter the voltage-dependent charge movement of the S4 in domain IV such that it accounted for the appearance of additional gating charge at potentials near -100 mV. These findings suggest that lidocaine's actions on Na channel gating charge result from allosteric coupling of the binding site(s) of lidocaine to the voltage sensors formed by the S4 segments in domains III and IV.  相似文献   

4.
There are two reasons for suspecting that phosphate complexes of arginine make it very difficult to derive gating charge in voltage gated potassium (and presumably sodium) channels from the motion of charged arginines. For one thing, the arginines should be complexed with phosphate, thereby neutralizing the charge, at least partially. Second, Li et al1 have shown that there is a large energy penalty for putting a charged arginine into a membrane. Ion channel gating current is generally attributed to S4 motion, in that the S4 segment of the voltage sensing domain (VSD) of these channels contains arginines, some of which are not (or at least not obviously) salt bridged, or otherwise charge compensated. There is, however, good reason to expect that there should be a complex of these arginines with phosphate, very probably from lipid headgroups. This has consequences for gating current; the complexed arginines, if they moved, would carry too little charge to provide the observed gating current, if they carried any net charge at all. This leads to the suggestion that an alternative to S4 physical motion, H+ transport, should be considered as a possible resolution of the apparent paradox. The consequences for a gating model that was proposed in our earlier work are discussed; there is one major difference in the model in the present form (a conformational change), but the proton cascade as gating current and the role of water in the closed state are reinforced.  相似文献   

5.
6.
Voltage-sensor domains (VSDs) in voltage-gated ion channels are thought to regulate the probability that a channel adopts an open conformation by moving vertically in the lipid bilayer. Here we characterized the movement of the VSDs of the prokaryotic voltage-gated sodium channel, NaChBac. Substitution of residue T110, which is located on the extracellular side of the fourth transmembrane helix of the VSD, by cysteine resulted in the formation of a disulfide bond between adjacent subunits in the channel. Our results suggest that T110 residues in VSDs of adjacent subunits can come into close proximity, implying that the VSDs can move laterally in the membrane and constitute a mechanism that regulates channel activity.  相似文献   

7.
Analysis of post-perturbation gating kinetics of single ion channels   总被引:1,自引:0,他引:1  
Analysis of mean dwell-times as a function of the number of channel openings elapsed since a stepwise perturbation in ion-channel kinetics is shown to provide information concerning the topology of the underlying gating mechanism. The difference between the post-perturbation mean dwell-time and the corresponding equilibrium mean is shown to decay as the sum of Ng-1 geometric terms in k, the number of openings since the perturbation, where Ng is the minimum number of gateway states in the channel gating mechanism. The method is illustrated by consideration of various simple gating schemes. A modification of the method accommodating the presence of channel inactivation or desensitization is described. Application of the method to a delayed-rectifier type K+ channel of NG108-15 cells reveals that Ng greater than or equal to 2, consistent with a branched gating mechanism.  相似文献   

8.
Current through voltage-gated K+ channels underlies the action potential encoding the electrical signal in excitable cells. The four subunits of a voltage-gated K+ channel each have six transmembrane segments (S1-S6), whereas some other K+ channels, such as eukaryotic inward rectifier K+ channels and the prokaryotic KcsA channel, have only two transmembrane segments (M1 and M2). A voltage-gated K+ channel is formed by an ion-pore module (S5-S6, equivalent to M1-M2) and the surrounding voltage-sensing modules. The S4 segments are the primary voltage sensors while the intracellular activation gate is located near the COOH-terminal end of S6, although the coupling mechanism between them remains unknown. In the present study, we found that two short, complementary sequences in voltage-gated K+ channels are essential for coupling the voltage sensors to the intracellular activation gate. One sequence is the so called S4-S5 linker distal to the voltage-sensing S4, while the other is around the COOH-terminal end of S6, a region containing the actual gate-forming residues.  相似文献   

9.
Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel.  相似文献   

10.
HCN (hyperpolarization-activated cyclic nucleotide gated) pacemaker channels have an architecture similar to that of voltage-gated K+ channels, but they open with the opposite voltage dependence. HCN channels use essentially the same positively charged voltage sensors and intracellular activation gates as K+ channels, but apparently these two components are coupled differently. In this study, we examine the energetics of coupling between the voltage sensor and the pore by using cysteine mutant channels for which low concentrations of Cd2+ ions freeze the open–closed gating machinery but still allow the sensors to move. We were able to lock mutant channels either into open or into closed states by the application of Cd2+ and measure the effect on voltage sensor movement. Cd2+ did not immobilize the gating charge, as expected for strict coupling, but rather it produced shifts in the voltage dependence of voltage sensor charge movement, consistent with its effect of confining transitions to either closed or open states. From the magnitude of the Cd2+-induced shifts, we estimate that each voltage sensor produces a roughly three- to sevenfold effect on the open–closed equilibrium, corresponding to a coupling energy of ∼1.3–2 kT per sensor. Such coupling is not only opposite in sign to the coupling in K+ channels, but also much weaker.  相似文献   

11.
The muO-conotoxins MrVIA and MrVIB are 31-residue peptides from Conus marmoreus, belonging to the O-superfamily of conotoxins with three disulfide bridges. They have attracted attention because they are inhibitors of tetrodotoxin-insensitive voltage-gated sodium channels (Na(V)1.8) and could therefore serve as lead structure for novel analgesics. The aim of this study was to elucidate the molecular mechanism by which muO-conotoxins affect Na(V) channels. Rat Na(V)1.4 channels and mutants thereof were expressed in mammalian cells and were assayed with the whole-cell patch-clamp method. Unlike for the M-superfamily mu-conotoxin GIIIA from Conus geographus, channel block by MrVIA was strongly diminished after activating the Na(V) channels by depolarizing voltage steps. Searching for the source of this voltage dependence, the gating charges in all four-voltage sensors were reduced by site-directed mutagenesis showing that alterations of the voltage sensor in domain-2 have the strongest impact on MrVIA action. These results, together with previous findings that the effect of MrVIA depends on the structure of the pore-loop in domain-3, suggest a functional similarity with scorpion beta-toxins. In fact, MrVIA functionally competed with the scorpion beta-toxin Ts1 from Tityus serrulatus, while it did not show competition with mu-GIIIA. Ts1 and mu-GIIIA did not compete either. Thus, similar to scorpion beta-toxins, muO-conotoxins are voltage-sensor toxins targeting receptor site-4 on Na(V) channels. They "block" Na(+) flow most likely by hindering the voltage sensor in domain-2 from activating and, hence, the channel from opening.  相似文献   

12.
The venom from spiders, scorpions, and sea anemone contain a rich diversity of protein toxins that interact with ion channel voltage sensors. Although atomic structures have been solved for many of these toxins, the surfaces that are critical for interacting with voltage sensors are poorly defined. Hanatoxin and SGTx are tarantula toxins that inhibit activation of K(v) channels by interacting with each of the four voltage sensors. In this study we set out to identify the active surface of these toxins by alanine-scanning SGTx and characterizing the interaction of each mutant with the K(v)2.1 channel. Examination of the concentration dependence for inhibition identified 15 mutants with little effect on the concentration dependence for toxin inhibition of the K(v)2.1 channel, and 11 mutants that display moderate to dramatic perturbations. Mapping of these results onto the structure of SGTx identifies one face of the toxin where mutations with pronounced perturbations cluster together, and a backside of the toxin where mutations are well tolerated. The active surface of SGTx contains a ring-like assembly of highly polar residues, with two basic residues that are particularly critical, concentrically arranged around a hydrophobic protrusion containing critical aliphatic and aromatic residues. These results identify the active surface of the toxin and reveal the types of side chains that are important for interacting with voltage sensors.  相似文献   

13.
The effects of the phototoxic K+- channel blockers 8-methoxypsoralen (8-MOP) and 5-methoxypsoralen (5-MOP) on Ranvier nodes were compared to those of 5,8-diethoxypsoralen (5,8-EOP) by means of the Hodgkin-Huxley formalism. When these test substances were added individually to the bathing solution (8-MOP: 100 micromol/l; 5-MOP: 50 micromol/l; 5,8-EOP: 10 micromol/l) the following completely reversible effects were observed: 1. 8-MOP, caused a nearly potential-independent decrease of the sodium permeability, P'Na, by ca. 17%. 5-MOP and 5,8-EOP merely decreased the maximal value of P'Na, by ca. 12 and 8% respectively, whereas with weak depolarisations P'Na was unchanged. 2. In the tested potential range the potassium permeability, P'K, was caused to decrease by ca. 9% by 8-MOP, ca. 21% by 5-MOP and ca. 19% by 5,8-EOP. 3. The potassium currents acquired a phasic time course previously described for 8-MOP and 5-MOP. They reached a relative maximum and approached a lower steady-state value, kinfinity, with a time constant tauk at V = 120 mV of about 16 ms (8-MOP), 20 ms (5-MOP) and 94 ms (5,8-EOP). To obtain dose-response relations the drug-induced effects on peak P'K and on the steady state value, kinfinity, were measured. The corresponding apparent dissociation constants (in micromol/l) were 66.6 and 80.1 (for 8-MOP), 87.6 and 25.8 (for 5-MOP), and 13.5 and 6.5 (for 5,8-EOP). In view of the similarity of the actions of 5-MOP and 5,8-EOP as well as the fact that 5,8-EOP is not phototoxic, in future 5,8-EOP may well prove to be a particularly suitable K+-channel blocker for the symptomatic therapy of multiple sclerosis and other demyelinating diseases.  相似文献   

14.
Voltage gated potassium channels open and inactivate in response to changes of the voltage across the membrane. After removal of the fast N-type inactivation, voltage gated Shaker K-channels (Shaker-IR) are still able to inactivate through a poorly understood closure of the ion conduction pore. This, usually slower, inactivation shares with binding of pore occluding peptide toxin two important features: i), both are sensitive to the occupancy of the pore by permeant ions or tetraethylammonium, and ii), both are critically affected by point mutations in the external vestibule. Thus, mutual interference between these two processes is expected. To explore the extent of the conformational change involved in Shaker slow inactivation, we estimated the energetic impact of such interference. We used kappa-conotoxin-PVIIA (kappa-PVIIA) and charybdotoxin (CTX) peptides that occlude the pore of Shaker K-channels with a simple 1:1 stoichiometry and with kinetics 100-fold faster than that of slow inactivation. Because inactivation appears functionally different between outside-out patches and whole oocytes, we also compared the toxin effect on inactivation with these two techniques. Surprisingly, the rate of macroscopic inactivation and the rate of recovery, regardless of the technique used, were toxin insensitive. We also found that the fraction of inactivated channels at equilibrium remained unchanged at saturating kappa-PVIIA. This lack of interference with toxin suggests that during slow inactivation the toxin receptor site remains unaffected, placing a strong geometry-conservative constraint on the possible structural configurations of a slow inactivated K-channel. Such a constraint could be fulfilled by a concerted rotation of the external vestibule.  相似文献   

15.
Ion channels are protein molecules, which can assume distinct open and closed conformational states, a phenomenon termed ion channel kinetics. The transitions from one state to another depend on the potential energy barrier that separates those two states. Therefore, it is rational to suppose that electromagnetic waves could interact with this barrier and induce changes in the rate transitions of this kinetic process. Our aim is to answer the question: can electromagnetic radiations induce changes in the kinetics of voltage-dependent ion channels? We simulated the effects of the low and high frequency electromagnetic waves on the sodium and potassium channels of the giant axon of Loligo. The key parameter measured was the fractional open time (fv), because it reflects the voltage dependence of the kinetics of channels. The electromagnetic radiations induced the following changes in the kinetics of the potassium and sodium channels: i/ low frequency waves kept the potassium channel 50% of the time open independent on the mean voltage applied through the membrane; ii/ a gradual inhibition of the inactivation on the sodium channel, when the amplitudes of the low frequency waves were increased; iii/ high frequency waves on the potassium channel, decreased both Vo (voltage in which the channel stays 50% open) and the steepness of fv (d fv/dV) as the amplitudes of the waves increased, and iv/ high frequency and low amplitude radiations on the sodium channel decreased the maximum value of fv (in relation to control), while high amplitudes increased this value. In conclusion, high and low frequency electromagnetic radiations were able to change the kinetics of the potassium and sodium channels in a squid giant axon model.  相似文献   

16.
Ion channels activated by glutamate, aspartate, and N-methyl-D-aspartate (NMDA) have been investigated in outside-out patches from cultured cerebellar granule neurons of the rat. Openings of these channels occur in bursts, within which the individual openings are separated by brief shuttings or gaps. The shut-time distributions obtained with each agonist were fitted with four exponential components. The briefest two components were considered as 'gaps within bursts'. Their mean time-constants were: glutamate, 58.0 microseconds and 592 microseconds; aspartate, 31.3 microseconds and 644 microseconds; NMDA, 40.5 microseconds and 903 microseconds. Distributions of burst durations were fitted with three exponential components. The mean time-constants obtained for the longest two components were: glutamate, 1.33 ms and 10.5 ms; aspartate, 2.15 ms and 10.3 ms; NMDA, 2.42 ms and 10.5 ms. Evidence is given that these two components of burst duration reflect the gating kinetics of 50 pS openings and not the fact that each agonist produces openings to more than one conductance level. Not only do openings occur in bursts, but these bursts were observed to occur in clusters, which can be hundreds of milliseconds long. We discuss the relation between the kinetics of single-channel openings observed in patches and the spectral components detected in whole-cell current noise.  相似文献   

17.
18.
TRPV channels as temperature sensors   总被引:13,自引:0,他引:13  
The past year has seen a doubling in the number of heat-sensitive ion channels to six, and four of these channels are from the TRPV family. These channels characteristically have Q(10) values of >10 above the thermal threshold, very different from the Q(10) values of 1.5-2.0 seen in most ion channels. Cells expressing TRPV1 show similar temperature sensitivity to small capsaicin-sensitive nociceptor neurons, consistent with these neurons expressing homomers of TRPV1. A-delta fibres exhibit properties that may be explained by TRPV2 containing channels which is present in large diameter sensory neurons that do not express TRPV1. TRPV3 has a lower temperature threshold and may contribute to warm-sensitive channels together with TRPV1. Warm sensation may also be transduced by TRPV4 expressing sensory neurons and hypothalamic neurons. We can now look forward to further work defining the properties of the recombinant channels in more detail and a re-analysis of endogenous i(heat) currents in thermosensitive neurons and other cells. Data from the study of mice in which TRPV2, TRPV3 or TRPV4 have been deleted are also eagerly awaited.  相似文献   

19.
20.
Voltage-gated ion channels are crucial for electrical activity and chemical signaling in a variety of cell types. Structure-activity studies involving electrophysiological characterization of mutants are widely used and allow us to quickly realize the energetic effects of a mutation by measuring macroscopic currents and fitting the observed voltage dependence of conductance to a Boltzmann equation. However, such an approach is somewhat limiting, principally because of the inherent assumption that the channel activation is a two-state process. In this analysis, we show that the area delineated by the gating charge displacement curve and its ordinate axis is related to the free energy of activation of a voltage-gated ion channel. We derive a parameter, the median voltage of charge transfer (V(m)), which is proportional to this area, and prove that the chemical component of free energy change of a system can be obtained from the knowledge of V(m) and the maximum number of charges transferred. Our method is not constrained by the number or connectivity of intermediate states and is applicable to instances in which the observed responses show a multiphasic behavior. We consider various models of ion channel gating with voltage-dependent steps, latent charge movement, inactivation, etc. and discuss the applicability of this approach in each case. Notably, our method estimates a net free energy change of approximately -14 kcal/mol associated with the full-scale activation of the Shaker potassium channel, in contrast to -2 to -3 kcal/mol estimated from a single Boltzmann fit. Our estimate of the net free energy change in the system is consistent with those derived from detailed kinetic models (Zagotta et al. 1994. J. Gen. Physiol. doi:10.1085/jgp.103.2.321). The median voltage method can reliably quantify the magnitude of free energy change associated with activation of a voltage-dependent system from macroscopic equilibrium measurements. This will be particularly useful in scanning mutagenesis experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号