首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of complex subcellular organelles requires the coordinated targeting of multiple components. Melanosome biogenesis in mouse melanocytes is an excellent model system for studying the coordinated function of multiple gene products in intracellular trafficking. To begin to order events in melanosome biogenesis and distribution, we employed the classical coat-color mutants ashen , dilute , and leaden , which affect melanosome distribution, but not melanin synthesis. The loci have been renamed Rab27a , Myo5a , and Mlph for their gene products. While each of the three loci has been shown to be required for melanosome distribution, the point(s) at which each acts is unknown. We have utilized primary melanocytes to examine the interdependencies between rab27a, myosin-Va, and melanophilin. The localization of rab27a to melanosomes did not require the function of either myosin-Va or melanophilin, but leaden function was required for the association of myosin-Va with melanosomes. In leaden melanocytes permeabilized before fixation, myosin-Va immunoreactivity was greatly attenuated, suggesting that myosin-Va is free in the cytoplasm. Finally, we have complemented both the leaden and ashen phenotypes by cell fusion and observed redistribution of mature melanosomes in the absence of both protein and melanin synthesis. Together, our data suggest a model for the initial assembly of the machinery required for melanosome distribution.  相似文献   

2.
Unlike wild-type mouse melanocytes, where melanosomes are concentrated in dendrites and dendritic tips, melanosomes in dilute (myosin Va) melanocytes are concentrated in the cell center. Here we sought to define the role that myosin Va plays in melanosome transport and distribution. Actin filaments that comprise a cortical shell running the length of the dendrite were found to exhibit a random orientation, suggesting that myosin Va could drive the outward spreading of melanosomes by catalyzing random walks. In contrast to this mechanism, time lapse video microscopy revealed that melanosomes undergo rapid (∼1.5 μm/s) microtubule-dependent movements to the periphery and back again. This bidirectional traffic occurs in both wild-type and dilute melanocytes, but it is more obvious in dilute melanocytes because the only melanosomes in their periphery are those undergoing this movement. While providing an efficient means to transport melanosomes to the periphery, this component does not by itself result in their net accumulation there. These observations, together with previous studies showing extensive colocalization of myosin Va and melanosomes in the actin-rich periphery, suggest a mechanism in which a myosin Va–dependent interaction of melanosomes with F-actin in the periphery prevents these organelles from returning on microtubules to the cell center, causing their distal accumulation. This “capture” model is supported by the demonstration that (a) expression of the myosin Va tail domain within wild-type cells creates a dilute-like phenotype via a process involving initial colocalization of tail domains with melanosomes in the periphery, followed by an ∼120-min, microtubule-based redistribution of melanosomes to the cell center; (b) microtubule-dependent melanosome movement appears to be damped by myosin Va; (c) intermittent, microtubule-independent, ∼0.14 μm/s melanosome movements are seen only in wild-type melanocytes; and (d) these movements do not drive obvious spreading of melanosomes over 90 min. We conclude that long-range, bidirectional, microtubule-dependent melanosome movements, coupled with actomyosin Va–dependent capture of melanosomes in the periphery, is the predominant mechanism responsible for the centrifugal transport and peripheral accumulation of melanosomes in mouse melanocytes. This mechanism represents an alternative to straightforward transport models when interpreting other myosin V mutant phenotypes.  相似文献   

3.
Melanosomes are lysosome-related organelles in retinal pigment epithelial cells and epidermal melanocytes in which melanin pigments are synthesized and stored. Melanosomes are generated by multistep processes in which an immature unpigmented organelle forms and then subsequently matures. Such maturation requires inter-organellar transport of protein cargos required for pigment synthesis but also recruitment of effector proteins necessary for the correct transport of melanosomes to the cell periphery. Several studies have started to unravel the main pathways and mechanisms exploited by melanosomal proteins involved in melanosome structure and melanin synthesis. A major unexpected finding seen early in melanosome biogenesis showed the similarities between the fibrillar sheets of premelanosomes and amyloid fibrils. Late steps of melanosome formation are dependent on pathways regulated by proteins encoded by genes mutated in genetic diseases such as the Hermansky-Pudlak Syndrom (HPS) and different types of albinism. Altogether the findings from the past recent years have started to unravel how specialized cells integrate unique and ubiquitous molecular mechanisms in subverting the endosomal system to generate cell-type specific structures and their associated functions. Further dissection of the melanosomal system will likely shed light not only on the biogenesis of lysosome-related organelles but also on general aspects of vesicular transport in the endosomal system.  相似文献   

4.
Melanocytes that lack the GTPase Rab27a (ashen) are disabled in myosin Va-dependent melanosome capture because the association of the myosin with the melanosome surface depends on the presence of this resident melanosomal membrane protein. One interpretation of these observations is that Rab27a functions wholly or in part as the melanosome receptor for myosin Va (Myo5a). Herein, we show that the ability of the myosin Va tail domain to localize to the melanosome and generate a myosin Va null (dilute) phenotype in wild-type melanocytes is absolutely dependent on the presence of exon F, one of two alternatively spliced exons present in the tail of the melanocyte-spliced isoform of myosin Va but not the brain-spliced isoform. Exon D, the other melanocyte-specific tail exon, is not required. Similarly, the ability of full-length myosin Va to colocalize with melanosomes and to rescue their distribution in dilute melanocytes requires exon F but not exon D. These results predict that an interaction between myosin Va and Rab27a should be exon F dependent. Consistent with this, Rab27a present in detergent lysates of melanocytes binds to beads coated with purified, full-length melanocyte myosin Va and melanocyte myosin Va lacking exon D, but not to beads coated with melanocyte myosin Va lacking exon F or brain myosin Va. Moreover, the preparation of melanocyte lysates in the presence of GDP rather than guanosine-5'-O-(3-thio)triphosphate reduces the amount of Rab27a bound to melanocyte myosin Va-coated beads by approximately fourfold. Finally, pure Rab27a does not bind to myosin Va-coated beads, suggesting that these two proteins interact indirectly. Together, these results argue that Rab27a is an essential component of a protein complex that serves as the melanosome receptor for myosin Va, suggest that this complex contains at least one additional protein capable of bridging the indirect interaction between Rab27a and myosin Va, and imply that the recruitment of myosin Va to the melanosome surface in vivo should be regulated by factors controlling the nucleotide state of Rab27a.  相似文献   

5.
Melanophilin (Mlph) regulates retention of melanosomes at the peripheral actin cytoskeleton of melanocytes, a process essential for normal mammalian pigmentation. Mlph is proposed to be a modular protein binding the melanosome-associated protein Rab27a, Myosin Va (MyoVa), actin, and microtubule end-binding protein (EB1), via distinct N-terminal Rab27a-binding domain (R27BD), medial MyoVa-binding domain (MBD), and C-terminal actin-binding domain (ABD), respectively. We developed a novel melanosome transport assay using a Mlph-null cell line to study formation of the active Rab27a:Mlph:MyoVa complex. Recruitment of MyoVa to melanosomes correlated with rescue of melanosome transport and required intact R27BD together with MBD exon F-binding region (EFBD) and unexpectedly a potential coiled-coil forming sequence within ABD. In vitro binding studies indicate that the coiled-coil region enhances binding of MyoVa by Mlph MBD. Other regions of Mlph reported to interact with MyoVa globular tail, actin, or EB1 are not essential for melanosome transport rescue. The strict correlation between melanosomal MyoVa recruitment and rescue of melanosome distribution suggests that stable interaction with Mlph and MyoVa activation are nondissociable events. Our results highlight the importance of the coiled-coil region together with R27BD and EFBD regions of Mlph in the formation of the active melanosomal Rab27a-Mlph-MyoVa complex.  相似文献   

6.
Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal enzymes tyrosinase-related protein 1 (Tyrp1) and tyrosinase follow an intracellular Golgi to melanosome pathway, whereas in the absence of glycosphingolipids, they are observed to pass over the cell surface. Unexpectedly, the lysosome-associated membrane protein 1 (LAMP-1) and 2 behaved exactly opposite: they were found to travel through the cell surface in control melanocytes but followed an intracellular pathway in the absence of glycosphingolipids. Chimeric proteins having the cytoplasmic tail of Tyrp1 or tyrosinase were transported like lysosomal proteins, whereas a LAMP-1 construct containing the lumenal domain of Tyrp1 localized to melanosomes. In conclusion, the lumenal domain contains sorting information that guides Tyrp1 and probably tyrosinase to melanosomes by an intracellular route that excludes lysosomal proteins and requires glucosylceramide.  相似文献   

7.
8.
Identification of an organelle receptor for myosin-Va   总被引:1,自引:0,他引:1  
  相似文献   

9.
Rab27a plays a pivotal role in the transport of melanosomes to dendrite tips of melanocytes and mutations in RAB27A, which impair melanosome transport cause the pigmentary dilution and the immune deficiency found in several patients with Griscelli syndrome (GS). Interestingly, three GS patients present single homozygous missense mutations in RAB27A, leading to W73G, L130P, and A152P transitions that affect highly conserved residues among Rab proteins. However, the functional consequences of these mutations have not been studied. In the present report, we evaluated the effect of overexpression of these mutants on melanosome, melanophilin, and myosin-Va localization in B16 melanoma cells. Then we studied several key parameters for Rab27a function, including GTP binding and interaction with melanophilin/myosin-Va complex, which links melanosomes to the actin network. Our results showed that Rab27a-L130P cannot bind GTP, does not interact with melanophilin, and consequently cannot allow melanosome transport on the actin filaments. Interestingly, Rab27a-W73G binds GTP but does not interact with melanophilin. Thus, Rab27a-W73G cannot support the actin-dependent melanosome transport. Finally, Rab27a-A152P binds both GTP and melanophilin. However, Rab27a-A152P does not allow melanosome transport and acts as a dominant negative mutant, because its overexpression, in B16 melanoma cells, mimics a GS phenotype. Hence, the interaction of Rab27a with melanophilin/myosin-Va is not sufficient to ensure a correct melanosome transport. Our results pointed to an unexpected complexity of Rab27a function and open the way to the search for new Rab27a effectors or regulators that control the transport of Rab27a-dependent vesicles.  相似文献   

10.
《Cellular signalling》2014,26(4):716-723
Transfer of melanin-containing melanosomes from melanocytes to neighboring keratinocytes results in skin pigmentation. Pharmacological modulation of melanosomal transfer has recently gained much attention as a strategy for modifying normal or abnormal pigmentation. In this study, while investigating the impact of pyridinyl imidazole (PI) compounds, a class of p38 MAPK inhibitors, on melanocyte differentiation we observed that some, but not all PIs interfere with the physiological melanosome sorting producing a strong retention of melanin in the intracellular compartment associated with a general reduction of melanin synthesis. Electron microscopy studies illustrated an accumulation of melanosomes inside melanocytes with enrichment in immature melanosome at stages II and III at the end of dendrites. We identified cyclin G-associated kinase GAK, a protein expressed ubiquitously in various tissues, as the off-target responsible of intracellular melanin accumulation and we report evidence that reduced GAK-dependent cathepsin maturation is implicated in melanosome sorting deficiency. The co-regulation of GAK and cathepsin B and L expression with the melanogenic biosynthetic pathway in normal human melanocytes as well as in B16-F0 melanoma cells strengthen the idea that these proteins represent new possible targets for prevention and treatment of irregular pigmentation.  相似文献   

11.
Slac2-c/MyRIP, an in vitro Rab27A- and myosin Va/VIIa-binding protein, has recently been proposed to regulate retinal melanosome transport in retinal pigment epithelium cells by directly linking melanosome-bound Rab27A and myosin VIIa; however, the exact function of Slac2-c in melanosome transport has never been clarified. In this study, we used melanosome transport in skin melanocytes as a model for retinal melanosome transport and analyzed the in vivo function of Slac2-c in melanosome transport by the ectopic expression of Slac2-c, together with myosin VIIa, in Slac2-a-depleted melanocytes. In vitro binding experiments revealed that myosin VIIa had a greater affinity for Slac2-c, compared with the binding affinity of myosin Va, and that the myosin VIIa-binding domain of Slac2-c is different from the previously characterized myosin Va-binding domain that is conserved between Slac2-a/melanophilin and Slac2-c. Consistent with this result, cyan fluorescent protein-tagged Slac2-c expressed in melanocytes was localized on melanosomes via the specific interaction with Rab27A and recruited co-expressed yellow fluorescent protein-tagged myosin VIIa to the melanosomes without interfering with the normal peripheral melanosome distribution, whereas when myosin VIIa alone was expressed in melanocytes, it was not localized on the melanosomes. Moreover, Slac2-c ectopically expressed in melanocytes did not rescue the perinuclear aggregation phenotype induced by the knockdown of endogenous Slac2-a with a specific small interfering RNA, whereas the expression of the Slac2-c x myosin VIIa complex supported the normal melanosome distribution in Slac2-a-depleted melanocytes, indicating that Slac2-c functions as a myosin VIIa receptor rather than a myosin Va receptor in melanosome transport. Based on these findings, we propose that Slac2-c acts as a functional myosin VIIa receptor and that the Rab27A.Slac2-c x myosin VIIa tripartite protein complex regulates the transport of retinal melanosomes in pigment epithelium cells.  相似文献   

12.
Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome that lack BLOC-1, melanosomal proteins such as tyrosinase-related protein 1 (Tyrp1) accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here, we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverse early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant-negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle.  相似文献   

13.
Melanin is a heterogeneous biopolymer produced only by specific cells termed melanocytes, which synthesize and deposit the pigment in specialized membrane-bound organelles known as melanosomes. Although melanosomes have been suspected of being closely related to lysosomes and platelets, the total number of melanosomal proteins is still unknown. Thus far, six melanosome-specific proteins have been identified, and the challenge is to characterize the complete proteome of the melanosome to further understand its mechanism of biogenesis. In this report, we used mass spectrometry and subcellular fractionation to identify protein components of early melanosomes. Using this approach, we have identified all 6 of the known melanosome-specific proteins, 56 proteins that are shared with other organelles, and confirmed the presence of 6 novel melanosomal proteins using western blotting and by immunohistochemistry.  相似文献   

14.
15.
Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by defects in the formation and function of lysosome-related organelles such as melanosomes. HPS in humans or mice is caused by mutations in any of 15 genes, five of which encode subunits of biogenesis of lysosome-related organelles complex (BLOC)-1, a protein complex with no known function. Here, we show that BLOC-1 functions in selective cargo exit from early endosomes toward melanosomes. BLOC-1-deficient melanocytes accumulate the melanosomal protein tyrosinase-related protein-1 (Tyrp1), but not other melanosomal proteins, in endosomal vacuoles and the cell surface due to failed biosynthetic transit from early endosomes to melanosomes and consequent increased endocytic flux. The defects are corrected by restoration of the missing BLOC-1 subunit. Melanocytes from HPS model mice lacking a different protein complex, BLOC-2, accumulate Tyrp1 in distinct downstream endosomal intermediates, suggesting that BLOC-1 and BLOC-2 act sequentially in the same pathway. By contrast, intracellular Tyrp1 is correctly targeted to melanosomes in melanocytes lacking another HPS-associated protein complex, adaptor protein (AP)-3. The results indicate that melanosome maturation requires at least two cargo transport pathways directly from early endosomes to melanosomes, one pathway mediated by AP-3 and one pathway mediated by BLOC-1 and BLOC-2, that are deficient in several forms of HPS.  相似文献   

16.
Cell types that generate unique lysosome-related organelles (LROs), such as melanosomes in melanocytes, populate nascent LROs with cargoes that are diverted from endosomes. Cargo sorting toward melanosomes correlates with binding via cytoplasmically exposed sorting signals to either heterotetrameric adaptor AP-1 or AP-3. Some cargoes bind both adaptors, but the relative contribution of each adaptor to cargo recognition and their functional interactions with other effectors during transport to melanosomes are not clear. Here we exploit targeted mutagenesis of the acidic dileucine-based sorting signal in the pigment cell-specific protein OCA2 to dissect the relative roles of AP-1 and AP-3 in transport to melanosomes. We show that binding to AP-1 or AP-3 depends on the primary sequence of the signal and not its position within the cytoplasmic domain. Mutants that preferentially bound either AP-1 or AP-3 each trafficked toward melanosomes and functionally complemented OCA2 deficiency, but AP-3 binding was necessary for steady-state melanosome localization. Unlike tyrosinase, which also engages AP-3 for optimal melanosomal delivery, both AP-1- and AP-3-favoring OCA2 variants required BLOC-1 for melanosomal transport. These data provide evidence for distinct roles of AP-1 and AP-3 in OCA2 transport to melanosomes and indicate that BLOC-1 can cooperate with either adaptor during cargo sorting to LROs.  相似文献   

17.
Different approaches for assaying melanosome transfer   总被引:3,自引:0,他引:3  
Many approaches have been tried to establish assays for melanosome transfer to keratinocytes. In this report, we describe and summarize various novel attempts to label melanosomes in search of a reliable, specific, reproducible and quantitative assay system. We tried to fluorescently label melanosomes by transfection of GFP-labeled melanosomal proteins and by incubation of melanocytes with fluorescent melanin intermediates or homologues. In most cases a weak cytoplasmic fluorescence was perceived, which was probably because of incorrect sorting or deficient incorporation of the fluorescent protein and different localization. We were able to label melanosomes via incorporation of 14C-thiouracil into melanin. Consequently, we tried to develop an assay to separate keratinocytes with transferred radioactivity from melanocytes after co-culture. Differential trypsinization and different magnetic bead separation techniques were tested with unsatisfactory results. An attempt was also made to incorporate fluorescent thiouracil, since this would allow cells to be separated by FACS. In conclusion, different methods to measure pigment transfer between donor melanocytes and acceptor keratinocytes were thoroughly examined. This information could give other researchers a head start in the search for a melanosome transfer assay with said qualities to better understand pigment transfer.  相似文献   

18.
The synthesis of pheomelanin requires the incorporation of thiol-containing compound(s) during the process of mammalian melanogenesis. Since melanins are produced only in specialized, membrane-bound organelles, known as melanosomes, such thiol donor(s) must cross the membrane barrier from the cytosol to the melanosome interior. Cysteine and/or glutathione (GSH) were proposed as suitable thiol donors, although uptake of these compounds into melanosomes was not previously characterized. In this study, we show that cysteine is transported, in a temperature- and concentration-dependent manner, across membranes of melanosomes derived from murine melanocytes. Additional proof that cysteine uptake results from a carrier-mediated process and is not due to simple diffusion or to a membrane channel, was obtained in countertransport experiments, in which melanosomes preloaded with cysteine methyl ester took up significantly more [35S]cysteine than did unloaded controls. In contrast, we were unable to detect any significant uptake of [35S]GSH over a wide concentration range, in the presence or in the absence of reducing agent. This study is the first demonstration of melanosomal membrane transport of cysteine, and it strongly suggests that free cysteine is the thiol source utilized for pheomelanin synthesis in mammalian melanocytes.  相似文献   

19.
20.
Melanosomes are lysosome-related organelles within which melanin pigments are synthesized and stored in melanocytes and retinal pigment epithelial cells. Early ultrastructural studies of pigment cells revealed that melanosomes consist of a complex series of organelles; more recently, these structures have been correlated with cargo constituents. By studying the fate of melanosomal and endosomal cargo in melanocytic cells, the effects of disease-related mutations on melanosomal morphology, and the genes affected by these mutations, we are beginning to gain novel insights into the biogenesis of these complex organelles and their relationship to the endocytic pathway. These insights demonstrate how specialized cells integrate unique and ubiquitous molecular mechanisms in subverting the endosomal system to generate cell-type specific structures and their associated functions. Further dissection of the melanosomal system will likely shed light not only on the biogenesis of lysosome-related organelles but also on general aspects of vesicular transport in the endosomal system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号