首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An enzyme's substrate specificity is one of its most important characteristics. The quantitative comparison of broad-specificity enzymes requires the selection of a homogenous set of substrates for experimental testing, determination of substrate-specificity data and analysis using multivariate statistics. We describe a systematic analysis of the substrate specificities of nine wild-type and four engineered haloalkane dehalogenases. The enzymes were characterized experimentally using a set of 30 substrates selected using statistical experimental design from a set of nearly 200 halogenated compounds. Analysis of the activity data showed that the most universally useful substrates in the assessment of haloalkane dehalogenase activity are 1-bromobutane, 1-iodopropane, 1-iodobutane, 1,2-dibromoethane and 4-bromobutanenitrile. Functional relationships among the enzymes were explored using principal component analysis. Analysis of the untransformed specific activity data revealed that the overall activity of wild-type haloalkane dehalogenases decreases in the following order: LinB~DbjA>DhlA~DhaA~DbeA~DmbA>DatA~DmbC~DrbA. After transforming the data, we were able to classify haloalkane dehalogenases into four SSGs (substrate-specificity groups). These functional groups are clearly distinct from the evolutionary subfamilies, suggesting that phylogenetic analysis cannot be used to predict the substrate specificity of individual haloalkane dehalogenases. Structural and functional comparisons of wild-type and mutant enzymes revealed that the architecture of the active site and the main access tunnel significantly influences the substrate specificity of these enzymes, but is not its only determinant. The identification of other structural determinants of the substrate specificity remains a challenge for further research on haloalkane dehalogenases.  相似文献   

2.
Microbial oxygenases and dehalogenases are key enzymes in the degradation of highly chlorinated compounds, which often become significant environmental pollutants. Oxygenases engineered by the methods of directed evolution exhibit enhanced degradation of PCBs and other chlorinated solvents such as trichloroethene and pentachloroethane. Dehalorespiration is an efficient dechlorination mechanism that is coupled with energy-yielding phosphorylation. Recently, a variety of chloroethene-dehalorespiring anaerobes have been isolated, and their reductive dehalogenases have been characterized in biochemical and genetic bases. This review describes our recent studies on dioxygenases and reductive dehalogenases.  相似文献   

3.
Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment.  相似文献   

4.
Culture-dependent and culture-independent approaches were used to determine the relationship between the dehalogenase gene pool in bacteria enriched and isolated on 2,2-dichloropropionic acid (22DCPA) and the environmental metagene pool (the collective gene pool of both the culturable and uncultured microbes) from which they were isolated. The dehalogenases in the pure-cultures isolates, which were able to degrade 22DCPA, were similar to previously described group I and II dehalogenases. Significantly, the majority of the dehalogenases isolated from activated sludge by degenerate PCR with primers specific for α-halocarboxylic acid dehalogenases were not closely related to the dehalogenases in any isolate. Furthermore, the dehalogenases found in the pure cultures predominated in the enrichments but were a minor component of the community used to inoculate the batch cultures. Phylogenetic analysis of the dehalogenase sequences isolated by degenerate PCR showed that the diversity of the group II deh gene was greater than that of the group I deh gene. Direct plating of the activated sludge onto minimal media supplemented with 22DCPA resulted in biomass and DNA from which dehalogenases were amplified. Analysis of the sequences revealed that they were much more closely related to the sequences found in the community used to start the enrichments. However, no pure cultures were obtained with this isolation method, and thus no pure cultures were available for identification. In this study we examined the link between genes found in pure cultures with the metagene pool from which they were isolated. The results show that there is a large bias introduced by culturing, not just in the bacteria isolated but also the degradative genes that they contain. Moreover, our findings serve as a caveat for studies involving the culturing of pure cultures of bacteria and conclusions which are drawn from analysis of these organisms.  相似文献   

5.
Haloalkane dehalogenases convert haloalkanes to their corresponding alcohols by a hydrolytic mechanism. To date, various haloalkane dehalogenases have been isolated from bacteria colonizing environments that are contaminated with halogenated compounds. A search of current databases with the sequences of these known haloalkane dehalogenases revealed the presence of three different genes encoding putative haloalkane dehalogenases in the genome of the human parasite Mycobacterium tuberculosis H37Rv. The ability of M. tuberculosis and several other mycobacterial strains to dehalogenate haloaliphatic compounds was therefore studied. Intact cells of M. tuberculosis H37Rv were found to dehalogenate 1-chlorobutane, 1-chlorodecane, 1-bromobutane, and 1,2-dibromoethane. Nine isolates of mycobacteria from clinical material and four strains from a collection of microorganisms were found to be capable of dehalogenating 1,2-dibromoethane. Crude extracts prepared from two of these strains, Mycobacterium avium MU1 and Mycobacterium smegmatis CCM 4622, showed broad substrate specificity toward a number of halogenated substrates. Dehalogenase activity in the absence of oxygen and the identification of primary alcohols as the products of the reaction suggest a hydrolytic dehalogenation mechanism. The presence of dehalogenases in bacterial isolates from clinical material, including the species colonizing both animal tissues and free environment, indicates a possible role of parasitic microorganisms in the distribution of degradation genes in the environment.  相似文献   

6.
Culture-dependent and culture-independent approaches were used to determine the relationship between the dehalogenase gene pool in bacteria enriched and isolated on 2,2-dichloropropionic acid (22DCPA) and the environmental metagene pool (the collective gene pool of both the culturable and uncultured microbes) from which they were isolated. The dehalogenases in the pure-cultures isolates, which were able to degrade 22DCPA, were similar to previously described group I and II dehalogenases. Significantly, the majority of the dehalogenases isolated from activated sludge by degenerate PCR with primers specific for alpha-halocarboxylic acid dehalogenases were not closely related to the dehalogenases in any isolate. Furthermore, the dehalogenases found in the pure cultures predominated in the enrichments but were a minor component of the community used to inoculate the batch cultures. Phylogenetic analysis of the dehalogenase sequences isolated by degenerate PCR showed that the diversity of the group II deh gene was greater than that of the group I deh gene. Direct plating of the activated sludge onto minimal media supplemented with 22DCPA resulted in biomass and DNA from which dehalogenases were amplified. Analysis of the sequences revealed that they were much more closely related to the sequences found in the community used to start the enrichments. However, no pure cultures were obtained with this isolation method, and thus no pure cultures were available for identification. In this study we examined the link between genes found in pure cultures with the metagene pool from which they were isolated. The results show that there is a large bias introduced by culturing, not just in the bacteria isolated but also the degradative genes that they contain. Moreover, our findings serve as a caveat for studies involving the culturing of pure cultures of bacteria and conclusions which are drawn from analysis of these organisms.  相似文献   

7.
We have cloned fragments of DNA (up to 13 kb), from Pseudomonas putida AJ1, that code for two stereospecific haloalkanoate dehalogenases. These enzymes are highly specific for D and L substrates. The two genes, designated hadD and hadL, have been isolated and independently expressed in Escherichia coli and P. putida hosts by using broad-host-range vectors. They are closely adjacent and inducible in what appears to be an operon with an upstream open reading frame of unknown function. Nucleotide sequence determination of hadD predicts a mature, cytoplasmic protein of 300 amino acid residues (molecular weight of 33,601). This has no significant homology with the L-specific haloalkanoate dehalogenases from Pseudomonas sp. strain CBS3 (B. Schneider, R. Muller, R. Frank, and F. Lingens, J. Bacteriol. 173:1530-1535, 1991) nor with any other known DNA or protein sequences.  相似文献   

8.
Structural comparison of three different haloalkane dehalogenases suggested that substrate specificity of these bacterial enzymes could be significantly influenced by the size and shape of their entrance tunnels. The surface residue leucine 177 positioned at the tunnel opening of the haloalkane dehalogenase from Sphingomonas paucimobilis UT26 was selected for modification based on structural and phylogenetic analysis; the residue partially blocks the entrance tunnel, and it is the most variable pocket residue in haloalkane dehalogenase-like proteins with nine substitutions in 14 proteins. Mutant genes coding for proteins carrying all possible substitutions in position 177 were constructed by site-directed mutagenesis and heterologously expressed in Escherichia coli. In total, 15 active protein variants were obtained, suggesting a relatively high tolerance of the site for the introduction of mutations. Purified protein variants were kinetically characterized by determination of specific activities with 12 halogenated substrates and steady-state kinetic parameters with two substrates. The effect of mutation on the enzyme activities varied dramatically with the structure of the substrates, suggesting that extrapolation of one substrate to another may be misleading and that a systematic characterization of the protein variants with a number of substrates is essential. Multivariate analysis of activity data revealed that catalytic activity of mutant enzymes generally increased with the introduction of small and nonpolar amino acid in position 177. This result is consistent with the phylogenetic analysis showing that glycine and alanine are the most commonly occurring amino acids in this position among haloalkane dehalogenases. The study demonstrates the advantages of using rational engineering to develop enzymes with modified catalytic properties and substrate specificities. The strategy of using site-directed mutagenesis to modify a specific entrance tunnel residue identified by structural and phylogenetic analyses, rather than combinatorial screening, generated a high percentage of viable mutants.  相似文献   

9.
The dehalogenases make use of fundamentally different strategies to cleave carbon-halogen bonds. The structurally characterized haloalkane dehalogenases, haloacid dehalogenases and 4-chlorobenzoate-coenzyme A dehalogenases use substitution mechanisms that proceed via a covalent aspartyl intermediate. Recent X-ray crystallographic analysis of a haloalcohol dehalogenase and a trans-3-chloroacrylic acid dehalogenase has provided detailed insight into a different intramolecular substitution mechanism and a hydratase-like mechanism, respectively. The available information on the various dehalogenases supports different views on the possible evolutionary origins of their activities.  相似文献   

10.
Haloalkane dehalogenases are key enzymes for the degradation of halogenated aliphatic pollutants. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, have open reading frames (ORFs), mlr5434 and blr1087, respectively, that encode putative haloalkane dehalogenase homologues. The crude extracts of Escherichia coli strains expressing mlr5434 and blr1087 showed the ability to dehalogenate 18 halogenated compounds, indicating that these ORFs indeed encode haloalkane dehalogenases. Therefore, these ORFs were referred to as dmlA (dehalogenase from Mesorhizobium loti) and dbjA (dehalogenase from Bradyrhizobium japonicum), respectively. The principal component analysis of the substrate specificities of various haloalkane dehalogenases clearly showed that DbjA and DmlA constitute a novel substrate specificity class with extraordinarily high activity towards beta-methylated compounds. Comparison of the circular dichroism spectra of DbjA and other dehalogenases strongly suggested that DbjA contains more alpha-helices than the other dehalogenases. The dehalogenase activity of resting cells and Northern blot analyses both revealed that the dmlA and dbjA genes were expressed under normal culture conditions in MAFF303099 and USDA110 strain cells, respectively.  相似文献   

11.
2-卤代酸脱卤酶(EC 3.8.1.X)催化2-卤代酸脱卤水解形成相应的2-羟基酸。该类酶不仅能够降解环境中的卤代污染物,而且具有宽广底物谱和高效手性拆分特性,因而在环保和手性中间体的绿色合成中具有广阔应用前景。目前已经对多种2-卤代酸脱卤酶进行生化特性表征,并对酶分子三维结构及催化机制进行了深入研究。文中从2-卤代酸脱卤酶的来源、蛋白质结构与催化反应机制、催化特性及应用方面等研究取得的新进展进行综述,并展望了2-卤代酸脱卤酶的进一步研究方向。  相似文献   

12.
Dehalogenases are of high interest due to their potential applications in bioremediation and in synthesis of various industrial products. DehL is an L-2-haloacid dehalogenase (EC 3.8.1.2) that catalyses the cleavage of halide ion from L-2-halocarboxylic acid to produce D-2-hydroxycarboxylic acid. Although DehL utilises the same substrates as the other L-2-haloacid dehalogenases, its deduced amino acid sequence is substantially different (<25%) from those of the rest L-2-haloacid dehalogenases. To date, the 3D structure of DehL is not available. This limits the detailed understanding of the enzyme’s reaction mechanism. The present work predicted the first homology-based model of DehL and defined its active site. The monomeric unit of the DehL constitutes α/β structure that is organised into two distinct structural domains: main and subdomains. Despite the sequence disparity between the DehL and other L-2-haloacid dehalogenases, its structural model share similar fold as the experimentally solved L-DEX and DehlB structures. The findings of the present work will play a crucial role in elucidating the molecular details of the DehL functional mechanism.  相似文献   

13.
In Pseudomonas paucimobilis UT26, gamma-hexachlorocyclohexane (gamma-HCH) is converted by two steps of dehydrochlorination to a chemically unstable intermediate, 1,3,4,6-tetrachloro-1,4-cyclohexadiene (1,4-TCDN), which is then metabolized to 2,5-dichloro-2,5-cyclohexadiene-1,4-diol (2,5-DDOL) by two steps of hydrolytic dehalogenation via the chemically unstable intermediate 2,4,5-trichloro-2,5-cyclohexadiene-1-ol (2,4,5-DNOL). To clone a gene encoding the enzyme responsible for the conversion of the chemically unstable intermediates 1,4-TCDN and 2,4,5-DNOL, a genomic library of P. paucimobilis UT26 was constructed in Pseudomonas putida PpY101LA into which the linA gene had been introduced by Tn5. An 8-kb BglII fragment from one of the cosmid clones, which could convert gamma-HCH to 2,5-DDOL, was subcloned, and subsequent deletion analyses revealed that a ca. 1.1-kb region was responsible for the activity. Nucleotide sequence analysis revealed an open reading frame (designated the linB gene) of 885 bp within the region. The deduced amino acid sequence of LinB showed significant similarity to hydrolytic dehalogenase, DhlA (D. B. Janssen, F. Pries, J. van der Ploeg, B. Kazemier, P. Terpstra, and B. Witholt, J. Bacteriol. 171:6791-6799, 1989). The protein product of the linB gene was 32 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Not only 1-chlorobutane but also 1-chlorodecane (C10) and 2-chlorobutane, which are poor substrates for other dehalogenases, were good substrates for LinB, suggesting that LinB may be a member of haloalkane dehalogenases with broad-range specificity for substrates.  相似文献   

14.
The cyanide-mediated ring opening of epoxides catalyzed by halohydrin dehalogenases yields β-hydroxynitriles that are of high interest for synthetic chemistry. The best studied halohydrin dehalogenase to date is the enzyme from Agrobacterium radiobacter, but this enzyme (HheC) exhibits only low cyanolysis activities. Sequence comparison between a pair of related halohydrin dehalogenases from Corynebacterium and Mycobacterium suggested that substitution of a threonine that interacts with the active site might be responsible for the higher cyanolytic activity of the former enzyme. Here we report that a variant of HheC in which this substitution (T134A) is adopted displays an up to 11-fold higher activity in cyanide-mediated epoxide ring-opening. The mutation causes removal of the hydrogen bond between residue 134 and the side chain O of the active site serine 132, which donates a hydrogen bond to the substrate oxygen. The mutation also increases dehalogenase rates with various substrates. Structural analysis revealed that the anion-binding site of the mutant enzyme remained unaltered, showing that the enhanced activity is due to altered interactions with the substrate oxygen rather than changes in the nucleophile binding site.  相似文献   

15.
Mutant strains of Pseudomonas putida PP3 capable of utilizing monochloroacetate (MCA) and dichloroacetate (DCA) as the sole sources of carbon and energy were isolated from chemostat cultures. The mutants differed from the parent strain in that they could grow on products of MCA and DCA dehalogenation (catalyzed by inducible dehalogenases I and II) and were resistant to growth inhibition by the two substrates. The growth inhibition of strain PP3 by MCA, DCA, and other halogenated alkanoic acids was studied. Sensitivity to dehalogenase substrates was related to the expression of the dehalogenase genes. For example, mutants producing elevated levels of one or both of the dehalogenases were sensitive to 2-monochloropropionate and 2-monochlorobutanoate at concentrations which did not affect the growth of strain PP3. P. putida PP1, the parent of strain PP3, was resistant to the inhibitory effects of MCA and DCA. Spontaneous mutants of strain PP3, also resistant to MCA and DCA, were selected at high frequency, and four different classes of these strains were distinguished on the basis of dehalogenase phenotype. All dehalogenase-producing mutants were inducible; no constitutive mutant has yet been isolated. Most of the resistant mutants examined did not produce one or both of the dehalogenase, and over half of those tested failed to revert back to the parental (strain PP3) phenotype, indicating that the observed mutations involved high-frequency deletion of DNA base sequences affecting expression of genes encoding dehalogenases and associated permease(s).  相似文献   

16.
The linB gene product (LinB), which is involved in the degradation of gamma-hexachlorocyclohexane in Sphingomonas paucimobilis UT26, is a member of haloalkane dehalogenases with a broad range of substrate specificity. Elucidation of the factors determining its substrate specificity is of interest. Aiming to facilitate purification of recombinant LinB protein for site-directed mutagenesis analysis, a 6-histidyl tail was added to the C-terminus of LinB. The His-tagged LinB was specifically bound with Ni-NTA resin in the buffer containing 10 mM imidazole. After elution with 500 mM imidazole, quantitative recovery of protein occurred. The steady-state kinetic parameters of the His-tagged LinB for four substrates were in good agreement with that of wild-type recombinant LinB. Although the His-tagged LinB expressed in an average of 80% of the activity of the wild type LinB for 10 different substrates, the decrease was very similar for different substrates with the standard deviation of 5.5%. The small activity reduction is independent of the substrate shape, size, or number of substituents, indicating that the His-tagged LinB can be used for further mutagenesis studies. To confirm the suitability of this system for mutagenesis studies, two mutant proteins with substitution in putative halide binding residues (W109 and F151) were constructed, purified, and tested for activity. As expected, complete loss in activity of W109L and sustained activity of F151W were observed.  相似文献   

17.
Favourable mutations involving the two dehalogenases (DehI and DehII) of Pseudomonas putida PP3 and derivative strains containing the cloned gene for DehI (dehI) occurred in response to specific environmental conditions, namely: starvation conditions; the presence of dehalogenase substrates (halogenated alkanoic acids — HAAs) which were toxic to P. putida; and/or the presence of a potential growth substrate. Fluctuation tests showed that these mutations were environmentally directed by the presence of HAAs. the mutations were associated with complex DNA rearrangements involving the movement of dehI located on a transposon DEH. Some mutations resulted in switching off the expression of either one or both of the dehalogenases, events which were effective in protecting P. putida from toxic compounds in its growth environment. Other mutations partially restored P. putida's dehalogenating capability under conditions where toxic substrates were absent. Restoration of the capability to untilize HAAs was favoured when normal growth substrates were present in the environment.  相似文献   

18.
Haloalcohol dehalogenases are bacterial enzymes that catalyze the cofactor-independent dehalogenation of vicinal haloalcohols such as the genotoxic environmental pollutant 1,3-dichloro-2-propanol, thereby producing an epoxide, a chloride ion and a proton. Here we present X-ray structures of the haloalcohol dehalogenase HheC from Agrobacterium radiobacter AD1, and complexes of the enzyme with an epoxide product and chloride ion, and with a bound haloalcohol substrate mimic. These structures support a catalytic mechanism in which Tyr145 of a Ser-Tyr-Arg catalytic triad deprotonates the haloalcohol hydroxyl function to generate an intramolecular nucleophile that substitutes the vicinal halogen. Haloalcohol dehalogenases are related to the widespread family of NAD(P)H-dependent short-chain dehydrogenases/reductases (SDR family), which use a similar Ser-Tyr-Lys/Arg catalytic triad to catalyze reductive or oxidative conversions of various secondary alcohols and ketones. Our results reveal the first structural details of an SDR-related enzyme that catalyzes a substitutive dehalogenation reaction rather than a redox reaction, in which a halide-binding site is found at the location of the NAD(P)H binding site. Structure-based sequence analysis reveals that the various haloalcohol dehalogenases have likely originated from at least two different NAD-binding SDR precursors.  相似文献   

19.
A coryneform bacterium that is able to utilize cis- and trans-3-chloroacrylic acid as sole carbon source for growth was isolated from freshwater sediment. The organism was found to produce two inducible dehalogenases, one specific for the cis- and the other for trans-3-chloroacrylic acid. Both dehalogenases were purified to homogeneity from cells induced for dehalogenase synthesis with 3-chlorocrotonic acid. The enzymes produced muconic acid semialdehyde (3-oxopropionic acid) from their respective 3-chloroacrylic acid substrate. No other substrates were found. The cis-3-chloroacrylic acid dehalogenase consisted of two polypeptide chains of a molecular weight 16.2 kDa. Trans-3-chloroacrylic acid dehalogenase was a protein with subunits of 7.4 and 8.7 kDa. The subunit and amino acid compositions and the N-terminal amino acid sequences of the enzymes indicate that they are not closely related.  相似文献   

20.
Halohydrin dehalogenases, also known as haloalcohol dehalogenases or halohydrin hydrogen-halide lyases, catalyze the nucleophilic displacement of a halogen by a vicinal hydroxyl function in halohydrins to yield epoxides. Three novel bacterial genes encoding halohydrin dehalogenases were cloned and expressed in Escherichia coli, and the enzymes were shown to display remarkable differences in substrate specificity. The halohydrin dehalogenase of Agrobacterium radiobacter strain AD1, designated HheC, was purified to homogeneity. The k(cat) and K(m) values of this 28-kDa protein with 1,3-dichloro-2-propanol were 37 s(-1) and 0.010 mM, respectively. A sequence homology search as well as secondary and tertiary structure predictions indicated that the halohydrin dehalogenases are structurally similar to proteins belonging to the family of short-chain dehydrogenases/reductases (SDRs). Moreover, catalytically important serine and tyrosine residues that are highly conserved in the SDR family are also present in HheC and other halohydrin dehalogenases. The third essential catalytic residue in the SDR family, a lysine, is replaced by an arginine in halohydrin dehalogenases. A site-directed mutagenesis study, with HheC as a model enzyme, supports a mechanism for halohydrin dehalogenases in which the conserved Tyr145 acts as a catalytic base and Ser132 is involved in substrate binding. The primary role of Arg149 may be lowering of the pK(a) of Tyr145, which abstracts a proton from the substrate hydroxyl group to increase its nucleophilicity for displacement of the neighboring halide. The proposed mechanism is fundamentally different from that of the well-studied hydrolytic dehalogenases, since it does not involve a covalent enzyme-substrate intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号