首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of substrate analogues as inhibitors provides a way to understand and manipulate enzyme function. Here we report two 1 A resolution crystal structures of liver alcohol dehydrogenase in complex with NADH and two inhibitors: dimethyl sulfoxide and isobutyramide. Both structures present a dynamic state of inhibition. In the dimethyl sulfoxide complex structure, the inhibitor is caught in transition on its way to the active site using a flash-freezing protocol and a cadmium-substituted enzyme. One inhibitor molecule is partly located in the first and partly in the second coordination sphere of the active site metal. A hydroxide ion bound to the active site metal lies close to the pyridine ring of NADH, which is puckered in a twisted boat conformation. The cadmium ion is coordinated by both the hydroxide ion and the inhibitor molecule, providing structural evidence of a coordination switch at the active site metal ion. The structure of the isobutyramide complex reveals the partial formation of an adduct between the isobutyramide inhibitor and NADH. It provides evidence of the contribution of a shift from the keto to the enol tautomer during aldehyde reduction. The different positions of the inhibitors further refine the knowledge of the dynamics of the enzyme mechanism and explain how the crowded active site can facilitate the presence of a substrate and a metal-bound hydroxide ion.  相似文献   

2.
A study of the reactions of an NADH model, 1,4-di(trimethylsilyl)-1,4-dihydropyridine, 7, with a series of α,β-unsaturated cyano and carbonyl compounds has produced the first direct evidence for an obligatory covalent adduct between a dihydropyridine and substrate in a reduction reaction. The reactions were monitored by NMR spectroscopy. In all reactions studied, the covalent adduct was the first new species detected and its decomposition to form products could be observed. Concentrations of adducts were sufficiently high at steady-state that their structures could be determined directly from NMR spectra of the reaction mixtures; adduct structures are those expected from an Ene reaction between 7 and the substrate. This first reaction step results in transfer of the C(4) hydrogen nucleus of 7 to the substrate and formation of a covalent bond between C(2) of the dihydropyridine ring and the substrate α-atom. Discovery of these Ene-adduct intermediates completes the spectrum of mechanisms observed in NADH model reactions to span those with free radical intermediates, no detectable intermediates and now covalent intermediates. The geometry of the transition state for formation of the Ene adduct is compared with those of theoretical transition state models and crystal structures of enzyme-substrate/inhibitor complexes to suggest a relative orientation for the dihydropyridine ring and the substrate in an initial cyclic transition state that is flexible enough to accommodate all observed mechanistic outcomes.  相似文献   

3.
Pejchal R  Sargeant R  Ludwig ML 《Biochemistry》2005,44(34):11447-11457
Methylenetetrahydrofolate reductases (MTHFRs; EC 1.7.99.5) catalyze the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using flavin adenine dinucleotide (FAD) as a cofactor. The initial X-ray structure of Escherichia coli MTHFR revealed that this 33-kDa polypeptide is a (betaalpha)(8) barrel that aggregates to form an unusual tetramer with only 2-fold symmetry. Structures of reduced enzyme complexed with NADH and of oxidized Glu28Gln enzyme complexed with CH(3)-H(4)folate have now been determined at resolutions of 1.95 and 1.85 A, respectively. The NADH complex reveals a rare mode of dinucleotide binding; NADH adopts a hairpin conformation and is sandwiched between a conserved phenylalanine, Phe223, and the isoalloxazine ring of FAD. The nicotinamide of the bound pyridine nucleotide is stacked against the si face of the flavin ring with C4 adjoining the N5 of FAD, implying that this structure models a complex that is competent for hydride transfer. In the complex with CH(3)-H(4)folate, the pterin ring is also stacked against FAD in an orientation that is favorable for hydride transfer. Thus, the binding sites for the two substrates overlap, as expected for many enzymes that catalyze ping-pong reactions, and several invariant residues interact with both folate and pyridine nucleotide substrates. Comparisons of liganded and substrate-free structures reveal multiple conformations for the loops beta2-alpha2 (L2), beta3-alpha3 (L3), and beta4-alpha4 (L4) and suggest that motions of these loops facilitate the ping-pong reaction. In particular, the L4 loop adopts a "closed" conformation that allows Asp120 to hydrogen bond to the pterin ring in the folate complex but must move to an "open" conformation to allow NADH to bind.  相似文献   

4.
2,6-Dichlorophenolindophenol reacts with the sulfhydryl group at the active site of apo-glyceraldehyde-3-phosphate dehydrogenase isolated from chicken muscle to form a leuco dye-enzyme adduct which is yellow. The leuco dye-enzyme adduct is oxidized by 2,6-dichlorophenolindophenol to form an oxidized dye-enzyme adduct which is blue. NADH converts the oxidized enzyme-dye adduct to the leuco enzymedye adduct. The enzyme-dye adducts catalyze the oxidation of NADH by 2,6-dichlorophenolindophenol in a reaction which exhibits “ping-pong” kinetics. The pH rate behavior of the reaction catalyzed by the enzyme-dye adduct differs considerably from the non-enzymatic oxidation of NADH by 2,6-dichlorophenolindophenol. A scheme for the reaction catalyzed by the enzyme-dye adduct which is consistent with the experimental observations is presented.  相似文献   

5.
We have synthesized phenyl adenine dinucleotide (P1-adenosine-5')-P2-(beta-D-ribofuranosylbenzene-5')-pyrophosphate (PhAD), a novel analog of pyridine nucleotide coenzymes. This compound contains a planar aromatic ring, as does NAD+, but lacks a positive charge. PhAD is an inhibitor of horse liver alcohol dehydrogenase, competitive with NADH. PhAD is very similar to NAD+ sterically since both compounds have a planar aromatic ring. However, PhAD resembles NADH in binding to the enzyme because the dissociation constants of both compounds show a parallel increase as the pH is raised, whereas those of NAD+ behave in the opposite manner. These observations indicate that the enzyme differentiates between NAD+ and NADH on the basis of the positive charge on the molecule and not the stereochemical orientation of the reduced nicotinamide ring.  相似文献   

6.
In basic solutions, pyruvate enolizes and reacts (through its 3-carbon) with the 4-carbon of the nicotinamide ring of NAD+, yielding an NAD-pyruvate adduct in which the nicotinamide ring is in the reduced form. This adduct is a strong inhibitor of lactate dehydrogenase, presumably because it binds simultaneously to the NADH and pyruvate sites. The potency of the inhibition, however, is muted by the adduct's tendency to cyclize to a lactam. We prepared solutions of the pyruvate adduct of NAD+ and of NAD+ analogues in which the -C(O)NH2 of NAD+ was replaced with -C(S)NH2, -C(O)CH3, and -C(O)H. Of the four, only the last analogue, 3-[4-(reduced 3-pyridine aldehyde-adenine dinucleotide)]-pyruvate (RAP) cannot cyclize and it was found to be the most potent inhibitor of beef heart and rat brain lactate dehydrogenases. The inhibitor binds very tightly to the NADH site (Ki approximately 1 nM for the A form). Even at high concentrations (20 microM), RAP had little or no effect on rat brain glyceraldehyde-3-phosphate, pyruvate, alpha-ketoglutarate, isocitrate, soluble and mitochondrial malate, and glutamate dehydrogenases. The glycolytic enzymes, hexokinase and phosphofructokinase, were similarly unaffected. RAP strongly inhibited lactate production from glucose in rat brain extracts but was less effective in inhibiting lactate production from glucose in synaptosomes.  相似文献   

7.
Chick embryo fibroblasts growing in medium free of pyridine ring precursors of NADH and NADPH replicate several times before multiplication ceases. The rate of glucose transport is progressively enhanced, finally reaching levels several times higher than those normally observed in cells severely depleted of NADH. Whereas normal cells respond to additional glucose by further reducing transport, the NADH-depleted cell is refractory to glucose even at five times the normal glucose concentration. Readdition of nicotinamide does little to restore normal transport within 24 h. On the other hand NAD+ or NADP+ provided simultaneously with glucose results in a sharp decline in measurable transport within 2-4 h. The role of the pyridine nucleotides in this reduction of transport function is for the moment unknown.  相似文献   

8.
1,2-Naphthoquinone (1,2-NQ) is electrophilic, and forms covalent bonds with protein thiols, but its two-electron reduction product 1,2-dihydroxynaphthalene (1,2-NQH(2)) is not, so enzymes catalyzing the reduction with reduced pyridine nucleotides as cofactors could protect cells from electrophile-based chemical insults. To assess this possibility, we examined proteins isolated from the 9000g supernatant from mouse liver for 1,2-NQ reductase activity using an HPLC assay procedure for the hydroquinone of 1,2-NQ and Cibacron Blue 3GA column chromatography and Western blot analysis with specific antibody to determine 1,2-NQ-bound proteins. Among the proteins with high affinities for pyridine nucleotides that also inhibited 1,2-NQ-protein adduct formation in the presence of NADH, a 37-kDa protein was found and identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Using recombinant human GAPDH, we found that this glycolytic enzyme indeed catalyzes the two-electron reduction of 1,2-NQ accompanied by extensive NADH consumption under 20% oxygen conditions. When either 1,2-NQH(2) or 1,2-NQ was incubated with GAPDH in the presence of NADH, minimal covalent bonding to the enzyme occurred compared to that in its absence. These results indicate that GAPDH can inhibit 1,2-NQ-based electrophilic protein modification by conversion to the nonelectrophilic 1,2-NQH(2) via an NADH-dependent process.  相似文献   

9.
Degradation of the reduced pyridine nucleotides NMNH and NADH by HOCl involves two distinct stages: a fast reaction, k = 4.2 x 10(5) M(-1) s(-1), leads to generation of stable pyridine products (Py/Cl) with a strong absorption band at 275 nm (epsilon = 12.4 x 10(3) M(-1) cm(-1) in the case of NMNH); secondarily, a subsequent reaction of HOCl, k = 3.9 x 10(3) M(-1) s(-1), leads to a complete loss of the aromatic absorption band of the pyridine ring. HOBr and HOI(I(2)) react similarly. Apparent rate constants of the primary reactions of HOX species with NMNH at pH 7.2 increase in the order HOCl (3 x 10(5) M(-1) s(-1)) < HOBr( approximately 4 x 10(6) M(-1) s(-1)) < HOI(I(2))( approximately 6.5 x 10(7) M(-1) s(-1)). HOBr reacts fast also with the primary product Py/Br, k approximately 9 x 10(5) M(-1) s(-1), while the reactions of HOI and I(2) with Py/I are slower, approximately 1.4 x 10(3) M(-1) s(-1) and >6 x 10(3) M(-1) s(-1), respectively. Halogenation of the amide group of NMN(+) by HOX species is many orders of magnitude slower than oxidation of NMNH. Taurine inhibits HOCl-induced oxidation of NADH, but HOBr-induced oxidation is not inhibited because the taurine monobromamine rapidly oxidizes NADH, and oxidation by HOI(I(2)) is not inhibited because taurine is inert toward HOI(I(2)). Also sulfur compounds (GSH, GSSG, and methionine) are less efficient in protecting NADH against oxidation by HOBr and HOI(I(2)) than against oxidation by HOCl. The results suggest that reactions of HOBr and HOI(I(2)) in a cellular environment are much more selectively directed toward irreversible oxidation of NADH than reactions of HOCl. It is noteworthy that the rather inert N-chloramines react with iodide to generate HOI(I(2)), i.e., the most reactive and selective oxidant of reduced pyridine nucleotides. NMR investigations show that the primary stable products of the reaction between NMNH and HOCl are various isomeric chlorohydrins originating from a nonstereospecific electrophilic addition of HOCl to the C5&dbond;C6 double bond of the pyridine ring. The primary products (Py/X) of NMNH all exhibit similar absorption bands around 275 nm and are hence likely to result from analogous addition of HOX to the C5&dbond;C6 bond of the pyridine ring. Since the Py/X species are stable and inert toward endogeneous reductants like ascorbate and GSH, they may generally be useful markers for assessing the contribution of hypohalous acids to inflammatory injury.  相似文献   

10.
Purification and properties of NADH oxidase from Bacillus megaterium   总被引:3,自引:0,他引:3  
NADH oxidase, which catalyzes the oxidation of NADH, with the consumption of a stoichiometric amount of oxygen, to NAD+ and hydrogen peroxide was purified from Bacillus megaterium by 5'-AMP Sepharose affinity chromatography to homogeneity. The enzyme is a dimeric protein containing 1 mol of FAD per mol of subunit, Mr = 52,000. The absorption maxima of the native enzyme (oxidized form) were found at 270, 383, and 450 with a shoulder at 475 nm in 50 mM KPi buffer, pH 7.0. The visible absorption bands at 383 and 450 nm disappeared on the addition of NADH under anaerobic conditions and reappeared upon the introduction of air. Thus, the non-covalently bound FAD functioned as a prosthetic group for the enzyme. We tentatively named this new enzyme NADH oxidase (NADH:oxygen oxidoreductase, hydrogen peroxide forming). This enzyme stereospecifically oxidizes the pro-S hydrogen at C-4 of the pyridine ring of NADH.  相似文献   

11.
Nitric oxide reductase cytochrome P450nor catalyzes an unusual reaction, direct electron transfer from NAD(P)H to bound heme. Here, we succeeded in determining the crystal structure of P450nor in a complex with an NADH analogue, nicotinic acid adenine dinucleotide, which provides conclusive evidence for the mechanism of the unprecedented electron transfer. Comparison of the structure with those of dinucleotide-free forms revealed a global conformational change accompanied by intriguing local movements caused by the binding of the pyridine nucleotide. Arg64 and Arg174 fix the pyrophosphate moiety upon the dinucleotide binding. Stereo-selective hydride transfer from NADH to NO-bound heme was suggested from the structure, the nicotinic acid ring being fixed near the heme by the conserved Thr residue in the I-helix and the upward-shifted propionate side-chain of the heme. A proton channel near the NADH channel is formed upon the dinucleotide binding, which should direct continuous transfer of the hydride and proton. A salt-bridge network (Glu71-Arg64-Asp88) was shown to be crucial for a high catalytic turnover.  相似文献   

12.
The catalase-peroxidase encoded by katG of Burkholderia pseudomallei (BpKatG) is 65% identical with KatG of Mycobacterium tuberculosis, the enzyme responsible for the activation of isoniazid as an antibiotic. The structure of a complex of BpKatG with an unidentified ligand, has been solved and refined at 1.7A resolution using X-ray synchrotron data collected from crystals flash-cooled with liquid nitrogen. The crystallographic agreement factors R and R(free) are 15.3% and 18.6%, respectively. The crystallized enzyme is a dimer with one modified heme group and one metal ion, likely sodium, per subunit. The modification on the heme group involves the covalent addition of two or three atoms, likely a perhydroxy group, to the secondary carbon atom of the vinyl group on ring I. The added group can form hydrogen bonds with two water molecules that are also in contact with the active-site residues Trp111 and His112, suggesting that the modification may have a catalytic role. The heme modification is in close proximity to an unusual covalent adduct among the side-chains of Trp111, Tyr238 and Met264. In addition, Trp111 appears to be oxidized on C(delta1) of the indole ring. The main channel, providing access of substrate hydrogen peroxide to the heme, contains a region of unassigned electron density consistent with the binding of a pyridine nucleotide-like molecule. An interior cavity, containing the sodium ion and an additional region of unassigned density, is evident adjacent to the adduct and is accessible to the outside through a second funnel-shaped channel. A large cleft in the side of the subunit is evident and may be a potential substrate-binding site with a clear pathway for electron transfer to the active-site heme group through the adduct.  相似文献   

13.
D C Sogin  B V Plapp 《Biochemistry》1976,15(5):1087-1093
Diazonium-1H-tetrazole was tested as a potential active-site-directed reagent for amino acid residues involved in catalysis by alcohol dehydrogenase. In a novel reaction with a protein, diazonium-1H-tetrazole inactivated the enzyme selectively, and almost stoichiometrically, but reacting with the sulfur of a cysteine residue, Cys-174. As a model compound, the tetrazole adduct of free cysteine was prepared. Elementary and spectral analyses of the adduct were consistent with the structure 5-tetrazoleazo-S-cysteine. The adduct absorbs light with a maximun at 316 nm, and is destroyed by irradiation at this wavelength. The inactivated enzyme still bound NADH as determined by difference spectroscopy, but did not enhance the fluorescence of the bound NADH as did native enzyme. X-ray crystallographic studies of free enzyme have shown that Cys-174 coordinates the zinc at the active site (Eklund, H., Nordstr?m, B., Zeppezauer, E., S?derlund, G., Ohlsson, I., Boiwe, T., and Br?ndén, C-I. (1974), FEBS Lett. 44, 200-204). The modified enzyme is probably inactive because the large, negatively charged tetrazole ring interferes sterically or electrostatically with the binding of substrates or with hydride transfer.  相似文献   

14.
A series of new thiophene amides containing a pyridine ring has been synthesized and characterized. Single crystal X-ray structures have been determined for four of the new substances which show two distinct patterns of hydrogen-bonding. The crystal structure of the copper (II) complex of one of the ligands shows that the bonding is O,N in a square planar geometry with perchlorate ions in the axial positions. The new compounds do not undergo electropolymerization due to primary oxidation of the amide function but tuning of the amide group by introduction of an electron-withdrawing group on the pyridine ring allows electropolymerization to occur.  相似文献   

15.
The NAD(P)H:flavin oxidoreductase from Escherichia coli, named Fre, is a monomer of 26.2 kDa that catalyzes the reduction of free flavins using NADPH or NADH as electron donor. The enzyme does not contain any prosthetic group but accommodates both the reduced pyridine nucleotide and the flavin in a ternary complex prior to oxidoreduction. The specificity of the flavin reductase for the pyridine nucleotide was studied by steady-state kinetics using a variety of NADP analogs. Both the nicotinamide ring and the adenosine part of the substrate molecule have been found to be important for binding to the polypeptide chain. However, in the case of NADPH, the 2'-phosphate group destabilized almost completely the interaction with the adenosine moiety. Moreover, NADPH and NMNH are very good substrates for the flavin reductase, and we have shown that both these molecules bind to the enzyme almost exclusively by the nicotinamide ring. This provides evidence that the flavin reductase exhibits a unique mode for recognition of the reduced pyridine nucleotide. In addition, we have shown that the flavin reductase selectively transfers the pro-R hydrogen from the C-4 position of the nicotinamide ring and is therefore classified as an A-side-specific enzyme.  相似文献   

16.
Conformational studies of R- and S-alpha-(N6-adenyl)styrene oxide adducts mismatched with deoxycytosine at position X6 in d(CGGACXAGAAG).d(CTTCTCGTCCG), incorporating codons 60, 61 (underlined), and 62 of the human N-ras protooncogene, are described. These were the R- and S(61,2)C adducts. The S(61,2)C adduct afforded a stable solution structure, while the R(61,2)C adduct resulted in a disordered structure. Distance restraints for the S(61, 2)C adduct were calculated from NOE data using relaxation matrix analysis. These were incorporated as effective potentials into the total energy equation. The structures were refined using restrained molecular dynamics calculations which incorporated a simulated annealing protocol. The accuracy of the emergent structures was evaluated by complete relaxation matrix methods. The structures refined to an average rms difference of 1.07 A, determined by pairwise analysis. The experimentally determined structure was compared to NOE intensity data using complete relaxation matrix back-calculations, yielding an R1x value of 11.2 x 10(-)2. The phenyl ring of the styrene in the S(61,2)C adduct was in the major groove and remained oriented in the 3'-direction as observed for the corresponding S(61,2) adduct paired with thymine [Feng, B., Zhou, L., Pasarelli, M., Harris, C. M., Harris, T. M., and Stone, M. P. (1995) Biochemistry 34, 14021-14036]. A shift of the modified adenine toward the minor groove resulted in the styrenyl ring stacking with nucleotide C5 on the 5'-side of the lesion, which shifted toward the major groove. Unlike the unmodified A.C mismatch, neither the S(61,2)C nor the R(61,2)C adduct formed protonated wobble A.C hydrogen bonds. This suggests that protonated wobble A.C pairing need not be prerequisite to low levels of alpha-SO-induced A --> G mutations. The shift of the modified adenine toward the minor groove in the S(61,2)C structure may play a more important role in the genesis of A --> G mutations. The disordered structure of the R(61,2)C adduct provides a potential explanation as to why that adduct does not induce A --> G mutations.  相似文献   

17.
Toney MD 《Biochemistry》2001,40(5):1378-1384
A computational study of nonenzymatic and enzymatic pyridoxal phosphate-catalyzed decarboxylation of 2-aminoisobutyrate (AIB) is presented. Four prototropic isomers of a model aldimine between AIB and 5'-deoxypyridoxal, with acetate interacting with the pyridine nitrogen, were employed in calculations of both gas phase and water model (PM3 and PM3-SM3) decarboxylation reaction paths. Calculations employing the transition state structures obtained for the four isomers allow the demonstration of stereoelectronic effects in transition state stabilization as well as a separation of the contributions of the Schiff base and pyridine ring moieties to this stabilization. The unprotonated Schiff base contribution (approximately 16 kcal/mol) is larger than that of the pyridine ring even when it is protonated (approximately 10 kcal/mol), providing an explanation of the catalytic power of pyruvoyl-dependent amino acid decarboxylases. An active site model of dialkylglycine decarboxylase was constructed and validated, and enzymatic decarboxylation reaction paths were calculated. The reaction coordinate is shown to be complex, with proton transfer from Lys272 to the coenzyme C4' likely simultaneous with C alpha--CO(2)(-) bond cleavage. The proposed concerted decarboxylation/proton-transfer mechanism provides a simple explanation for the observed specificity of this enzyme toward oxidative decarboxylation.  相似文献   

18.
The catabolism of toxic phenols in the thermophilic organism Bacillus thermoglucosidasius A7 is initiated by a two-component enzyme system. The smaller flavin reductase PheA2 component catalyzes the NADH-dependent reduction of free FAD according to a ping-pong bisubstrate-biproduct mechanism. The reduced FAD is then used by the larger oxygenase component PheA1 to hydroxylate phenols to the corresponding catechols. We have determined the x-ray structure of PheA2 containing a bound FAD cofactor (2.2 A), which is the first structure of a member of this flavin reductase family. We have also determined the x-ray structure of reduced holo-PheA2 in complex with oxidized NAD (2.1 A). PheA2 is a single domain homodimeric protein with each FAD-containing subunit being organized around a six-stranded beta-sheet and a capping alpha-helix. The tightly bound FAD prosthetic group (K(d) = 10 nm) binds near the dimer interface, and the re face of the FAD isoalloxazine ring is fully exposed to solvent. The addition of NADH to crystalline PheA2 reduced the flavin cofactor, and the NAD product was bound in a wide solvent-accessible groove adopting an unusual folded conformation with ring stacking. This is the first observation of an enzyme that is very likely to react with a folded compact pyridine nucleotide. The PheA2 crystallographic models strongly suggest that reactive exogenous FAD substrate binds in the NADH cleft after release of NAD product. Nanoflow electrospray mass spectrometry data indeed showed that PheA2 is able to bind one FAD cofactor and one FAD substrate. In conclusion, the structural data provide evidence that PheA2 contains a dual binding cleft for NADH and FAD substrate, which alternate during catalysis.  相似文献   

19.
Cirilli M  Zheng R  Scapin G  Blanchard JS 《Biochemistry》2003,42(36):10644-10650
Dihydrodipicolinate reductase (DHPR) catalyzes the reduced pyridine nucleotide-dependent reduction of the alpha,beta-unsaturated cyclic imine, dihydrodipicolinate, to generate tetrahydrodipicolinate. This enzyme catalyzes the second step in the bacterial biosynthetic pathway that generates meso-diaminopimelate, a component of bacterial cell walls, and the amino acid L-lysine. The Mycobacterium tuberculosis dapB-encoded DHPR has been cloned, expressed, purified, and crystallized in two ternary complexes with NADH or NADPH and the inhibitor 2,6-pyridinedicarboxylate (2,6-PDC). The structures have been solved using molecular replacement strategies, and the DHPR-NADH-2,6-PDC and DHPR-NADPH-2,6-PDC complexes have been refined against data to 2.3 and 2.5 A, respectively. The M. tuberculosis DHPR is a tetramer of identical subunits, with each subunit composed of two domains connected by two flexible hinge regions. The N-terminal domain binds pyridine nucleotide, while the C-terminal domain is involved in both tetramer formation and substrate/inhibitor binding. The M. tuberculosis DHPR uses NADH and NADPH with nearly equal efficiency based on V/K values. To probe the nature of this substrate specificity, we have generated two mutants, K9A and K11A, residues that are close to the 2'-phosphate of NADPH. These two mutants exhibit decreased specificity for NADPH by factors of 6- and 30-fold, respectively, but the K11A mutant exhibits 270% of WT activity using NADH. The highly conserved structure of the nucleotide fold may permit other enzyme's nucleotide specificity to be altered using similar mutagenic strategies.  相似文献   

20.
A covalently bound adduct of nicotinamide adenine dinucleotide (NAD) with alginic acid has been found to be enzymatically active and to undergo electrochemical oxidation or reduction without significant loss of its enzymatic activity. The preparation of the adduct itself (from NAD+, alginic acid, and 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate) is also accomplished with substantially complete retention of enzymatic activity. This adduct has been converted from the oxidized to the reduced form by controlled potential electrolysis using mercury and stainless-steel electrodes. This electrolytically produced NADH complex could be oxidized again to the enzymatically active NAD+ complex by enzymatic reaction with the proton acceptor, 2,6-dichlorophenol indophenol, as catalyzed by diaphorase. Using this electrolytic method with immobilized NAD, it is now possible to carry out redox reactions in which NADH is enzymatically oxidized to NAD+, with the simultaneous electrolytic regeneration of the reduced form, NADH, from the oxidized form, NAD+, produced in the enzymatic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号