首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Sehgal RN  Jones HI  Smith TB 《Molecular ecology》2005,14(13):3977-3988
Here we describe, determine the prevalence, and examine the host-specificity of some parasitic nematode microfilariae in selected bird species from West and Central Africa. We used microscopy to determine the prevalence of microfilariae in 969 host individuals representing 121 rainforest bird species from Cameroon, Côte d’Ivoire and Equatorial Guinea. Thirteen (11%) of these potential host species harboured microfilariae, and 35 individuals (3.6%) were infected. From the 35 infected individuals, we identified eight distinct morphological microfilarial forms. Sixteen of the 35 infected individuals were of one host species, the Fire-crested Alethe (Alethe diademata), at a prevalence rate of 62%. To examine host and geographical specificity, we sequenced a portion of the LSU rDNA gene from representative microfilariae drawn from different hosts and collecting locations. Identical sequences of the nematode LSU rDNA gene were found in A. diademata collected from locations in Côte d’Ivoire and Equatorial Guinea, locations separated by the Dahomey Gap and associated with different hypothesized refugial areas. In contrast, several other bird species collected at the same sites harboured different microfilaria lineages. We sequenced the mitochondrial ATP synthase genes of the host species A. diademata, and found a 5.4% sequence divergence between the birds sampled in Côte d’Ivoire, and those from Cameroon. Thus, despite this split between the two populations, they harbour microfilariae with identical lineages. These data provide evidence that the microfilariae found in A. diademata may be highly host specific. This apparent specificity may have important implications for the evolutionary and ecological interactions between parasitic nematodes and their avian hosts.  相似文献   

2.
Wild rabbits (Oryctolagus cuniculus) in Australia are the descendents of 24 animals from England released in 1859. We surveyed rabbits and rabbit fleas (Spilopsyllus cuniculi) in Australia for the presence of trypanosomes using parasitological and PCR-based methods. Trypanosomes were detected in blood from the European rabbits by microscopy, and PCR using trypanosome-specific small subunit ribosomal RNA (SSU rRNA) gene primers and those in rabbit fleas by PCR. This is the first record of trypanosomes from rabbits in Australia. We identified these Australian rabbit trypanosomes as Trypanosoma nabiasi, the trypanosome of the European rabbit, by comparison of morphology and SSU rRNA gene sequences of Australian and European rabbit trypanosomes. Phylogenetic analysis places T. nabiasi in a clade with rodent trypanosomes in the subgenus Herpetosoma and their common link appears to be transmission by fleas. Despite the strict host specificity of trypanosomes in this clade, phylogenies presented here suggest that they have not strictly cospeciated with their vertebrate hosts. We suggest that T. nabiasi was inadvertently introduced into Australia in the 1960s in its flea vector Spilopsyllus cuniculi, which was deliberately introduced as a potential vector of the myxoma virus. In view of the environmental and economic damage caused by rabbits in Australia and other islands, the development of a virulent or genetically modified T. nabiasi should be considered to control rabbits.  相似文献   

3.
Using microscopy and PCR, we determined the prevalence of blood parasites in village chickens in Uganda and Cameroon. Of 148 individuals tested, 18.3% were infected with Leucocytozoon schoutedeni (Haemosporida, Leucocytozoidae) and 4.1% were infected with Trypanosoma gallinarum (Kinetoplastida, Trypanosomatidae). No other blood parasites were detected. Subsequent phylogenetic analysis of the cytochrome b gene of L. schoutedeni identified 2 distinct lineages that were found at all 3 sampling locations in Uganda. The sequence divergence between these 2 lineages is 1.5%. One of these lineages was also found in chickens in Cameroon, nearly 2,000 km distant. There are no morphological differences between blood stages of the parasites represented by the 2 different lineages, suggesting that cytochrome b gene sequence divergence can be as high as 1.5% within a single well-defined morphospecies of Leucocytozoon. We sequenced a portion of the small subunit ribosomal RNA gene (SSU rRNA) of T. gallinarum, and redescribe T. gallinarum for the first time since its discovery in 1911. These are the first assignments of DNA sequence data to these morphospecies of Leucocytozoon and Trypanosoma and may represent an example of intraspecific sequence divergence.  相似文献   

4.
Trypanosomes (genus Trypanosoma) are widespread blood parasites of vertebrates, usually transmitted by arthropod or leech vectors. Most trypanosomes have lifecycles that alternate between a vertebrate host, where they exist in the bloodstream, and an invertebrate host, where they develop in the alimentary tract. This raises the question of whether one type of host has had greater influence on the evolution of the genus. Working from the generally accepted view that trypanosomes are monophyletic, here we examine relationships between trypanosomes using phylogenies based on the genes for the small subunit ribosomal RNA (SSU rRNA) and the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH). New analysis of a combined dataset of both these genes provides strong support for many known clades of trypanosomes. It also resolves the deepest split within the genus between the Aquatic clade, which mainly contains trypanosomes of aquatic and amphibious vertebrates, and a clade of trypanosomes from terrestrial vertebrates. There is also strengthened support for two deep clades, one comprising a wide selection of mammalian trypanosomes and a tsetse fly-transmitted reptilian trypanosome, and the other combining two bird trypanosome subclades. Considering the vertebrate and invertebrate hosts of each clade, it is apparent that co-speciation played little role in trypanosome evolution. However most clades are associated with a type of vertebrate or invertebrate host, or both, indicating that 'host fitting' has been the principal mechanism for evolution of trypanosomes.  相似文献   

5.
Little is known about the trypanosomes of indigenous Australian vertebrates and their vectors. We surveyed a range of vertebrates and blood-feeding invertebrates for trypanosomes by parasitological and PCR-based methods using primers specific to the small subunit ribosomal RNA (SSU rRNA) gene of genus Trypanosoma. Trypanosome isolates were obtained in culture from two common wombats, one swamp wallaby and an Australian bird (Strepera sp.). By PCR, blood samples from three wombats, one brush-tailed wallaby, three platypuses and a frog were positive for trypanosome DNA. All the blood-sucking invertebrates screened were negative for trypanosomes both by microscopy and PCR, except for specimens of terrestrial leeches (Haemadipsidae). Of the latter, two Micobdella sp. specimens from Victoria and 18 Philaemon sp. specimens from Queensland were positive by PCR. Four Haemadipsa zeylanica specimens from Sri Lanka and three Leiobdella jawarerensis specimens from Papua New Guinea were also PCR positive for trypanosome DNA. We sequenced the SSU rRNA and glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) genes in order to determine the phylogenetic positions of the new vertebrate and terrestrial leech trypanosomes. In trees based on these genes, Australian vertebrate trypanosomes fell in several distinct clades, for the most part being more closely related to trypanosomes outside Australia than to each other. Two previously undescribed wallaby trypanosomes fell in a clade with Trypanosoma theileri, the cosmopolitan bovid trypanosome, and Trypanosoma cyclops from a Malaysian primate. The terrestrial leech trypanosomes were closely related to the wallaby trypanosomes, T. cyclops and a trypanosome from an Australian frog. We suggest that haemadipsid leeches may be significant and widespread vectors of trypanosomes in Australia and Asia.  相似文献   

6.
To further investigate the phylogeny of protozoa from the order Kinetoplastida we have sequenced the small subunit (SSU) and a portion of the large subunit (LSU) nuclear rRNA genes. The SSU and LSU sequences were determined from a lizard trypanosome, Trypanosoma scelopori and a bodonid, Rhynchobodo sp., and the LSU sequences were determined from an insect trypanosomatid, Crithidia oncopelti, and a bodonid, Dimastigella trypaniformis. Contrary to previous results, in which trypanosomes were found to be paraphyletic, with Trypanosoma brucei representing the earliest-diverging lineage, we have now found evidence for the monophyly of trypanosomes. Addition of new taxa which subdivide long branches (such as that of T. brucei) have helped to identify homoplasies responsible for the paraphyletic trees in previous studies. Although the monophyly of the trypanosome clade is supported in the bootstrap analyses for maximum likelihood at 97% and maximum parsimony at 92%, there is only a small difference in ln-likelihood value or tree length between the most optimal monophyletic tree and the best suboptimal paraphyletic tree. Within the trypanosomatid subtree, the clade of trypanosomes is a sister group to the monophyletic clade of the nontrypanosome genera. Different groups of trypanosomes group on the tree according to their mode of transmission. This suggests that the adaptation to invertebrate vectors plays a more important role in the trypanosome evolution than the adaptation to vertebrate hosts. Received: 5 July 1996 / Accepted: 26 September 1996  相似文献   

7.
In this study, we addressed the phylogenetic and taxonomic relationships of Trypanosoma vivax and related trypanosomes nested in the subgenus Duttonella through combined morphological and phylogeographical analyses. We previously demonstrated that the clade T. vivax harbours a homogeneous clade comprising West African/South American isolates and the heterogeneous East African isolates. Herein we characterized a trypanosome isolated from a nyala antelope (Tragelaphus angasi) wild-caught in Mozambique (East Africa) and diagnosed as T. vivax-like based on biological, morphological and molecular data. Phylogenetic relationships, phylogeographical patterns and estimates of genetic divergence were based on SSU and ITS rDNA sequences of T. vivax from Brazil and Venezuela (South America), Nigeria (West Africa), and from T. vivax-like trypanosomes from Mozambique, Kenya and Tanzania (East Africa). Despite being well-supported within the T. vivax clade, the nyala trypanosome was highly divergent from all other T. vivax and T. vivax-like trypanosomes, even those from East Africa. Considering its host origin, morphological features, behaviour in experimentally infected goats, phylogenetic placement, and genetic divergence this isolate represents a new genotype of trypanosome closely phylogenetically related to T. vivax. This study corroborated the high complexity and the existence of distinct genotypes yet undescribed within the subgenus Duttonella.  相似文献   

8.
The genomes of Trypanosoma brucei, Trypanosoma cruzi and Leishmania major have been sequenced, but the phylogenetic relationships of these three protozoa remain uncertain. We have constructed trypanosomatid phylogenies based on genes for glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) and small subunit ribosomal RNA (SSU rRNA). Trees based on gGAPDH nucleotide and amino acid sequences (51 taxa) robustly support monophyly of genus Trypanosoma, which is revealed to be a relatively late-evolving lineage of the family Trypanosomatidae. Other trypanosomatids, including genus Leishmania, branch paraphyletically at the base of the trypanosome clade. On the other hand, analysis of the SSU rRNA gene data produced equivocal results, as trees either robustly support or reject monophyly depending on the range of taxa included in the alignment. We conclude that the SSU rRNA gene is not a reliable marker for inferring deep level trypanosome phylogeny. The gGAPDH results support the hypothesis that trypanosomes evolved from an ancestral insect parasite, which adapted to a vertebrate/insect transmission cycle. This implies that the switch from terrestrial insect to aquatic leech vectors for fish and some amphibian trypanosomes was secondary. We conclude that the three sequenced pathogens, T. brucei, T. cruzi and L. major, are only distantly related and have distinct evolutionary histories.  相似文献   

9.
Bird populations often have high prevalences of the haemosporidians Haemoproteus spp. and Plasmodium spp., but the extent of host sharing and host switching among these parasite lineages and their avian hosts is not well known. While sampling within a small geographic region in which host individuals are likely to have been exposed to the same potential parasite lineages, we surveyed highly variable mitochondrial DNA from haemosporidians isolated from 14 host taxa representing 4 avian families (Hirundinidae, Parulidae, Emberizidae, and Fringillidae). Analyses of cytochrome b sequences from 83 independent infections identified 29 unique haplotypes, representing 2 well-differentiated Haemoproteus spp. lineages and 6 differentiated Plasmodium spp. lineages. A phylogenetic reconstruction of relationships among these lineages provided evidence against host specificity at the species and family levels, as all haemosporidian lineages recovered from 2 or more host individuals (2 Haemoproteus and 3 Plasmodium lineages) were found in at least 2 host families. We detected a similar high level of host sharing; the 3 most intensively sampled host species each harbored 4 highly differentiated haemosporidian lineages. These results indicate that some Haemoproteus spp. and Plasmodium spp. lineages exhibit a low degree of host specificity, a phenomenon with implications for ecological and evolutionary interactions among these parasites and their hosts.  相似文献   

10.
In this study, using a combined data set of SSU rDNA and gGAPDH gene sequences, we provide phylogenetic evidence that supports clustering of crocodilian trypanosomes from the Brazilian Caiman yacare (Alligatoridae) and Trypanosoma grayi, a species that circulates between African crocodiles (Crocodilydae) and tsetse flies. In a survey of trypanosomes in Caiman yacare from the Brazilian Pantanal, the prevalence of trypanosome infection was 35% as determined by microhaematocrit and haemoculture, and 9 cultures were obtained. The morphology of trypomastigotes from caiman blood and tissue imprints was compared with those described for other crocodilian trypanosomes. Differences in morphology and growth behaviour of caiman trypanosomes were corroborated by molecular polymorphism that revealed 2 genotypes. Eight isolates were ascribed to genotype Cay01 and 1 to genotype Cay02. Phylogenetic inferences based on concatenated SSU rDNA and gGAPDH sequences showed that caiman isolates are closely related to T. grayi, constituting a well-supported monophyletic assemblage (clade T. grayi). Divergence time estimates based on clade composition, and biogeographical and geological events were used to discuss the relationships between the evolutionary histories of crocodilian trypanosomes and their hosts.  相似文献   

11.
The switching of parasitic organisms to novel hosts, in which they may cause the emergence of new diseases, is of great concern to human health and the management of wild and domesticated populations of animals. We used a phylogenetic approach to develop a better statistical assessment of host switching in a large sample of vector-borne malaria parasites of birds (Plasmodium and Haemoproteus) over their history of parasite-host relations. Even with sparse sampling, the number of parasite lineages was almost equal to the number of avian hosts. We found that strongly supported sister lineages of parasites, averaging 1.2% sequence divergence, exhibited highly significant host and geographical fidelity. Event-based matching of host and parasite phylogenetic trees revealed significant cospeciation. However, the accumulated effects of host switching and long distance dispersal cause these signals to disappear before 4% sequence divergence is achieved. Mitochondrial DNA nucleotide substitution appears to occur about three times faster in hosts than in parasites, contrary to findings on other parasite-host systems. Using this mutual calibration, the phylogenies of the parasites and their hosts appear to be similar in age, suggesting that avian malaria parasites diversified along with their modern avian hosts. Although host switching has been a prominent feature over the evolutionary history of avian malaria parasites, it is infrequent and unpredictable on time scales germane to public health and wildlife management.  相似文献   

12.
Blood examination by microhaematocrit and haemoculture of 459 snakes belonging to 37 species revealed 2.4% trypanosome prevalence in species of Viperidae (Crotalus durissus and Bothrops jararaca) and Colubridae (Pseudoboa nigra). Trypanosome cultures from C. durissus and P. nigra were behaviourally and morphologically indistinguishable. In addition, the growth and morphological features of a trypanosome from the sand fly Viannamyia tuberculata were similar to those of snake isolates. Cross-infection experiments revealed a lack of host restriction, as snakes of 3 species were infected with the trypanosome from C. durissus. Phylogeny based on ribosomal sequences revealed that snake trypanosomes clustered together with the sand fly trypanosome, forming a new phylogenetic lineage within Trypanosoma closest to a clade of lizard trypanosomes transmitted by sand flies. The clade of trypanosomes from snakes and lizards suggests an association between the evolutionary histories of these trypanosomes and their squamate hosts. Moreover, data strongly indicated that these trypanosomes are transmitted by sand flies. The flaws of the current taxonomy of snake trypanosomes are discussed, and the need for molecular parameters to be adopted is emphasized. To our knowledge, this is the first molecular phylogenetic study of snake trypanosomes.  相似文献   

13.
Species of the subgenus Trypanosoma (Megatrypanum) have been reported in cattle and other domestic and wild ruminants worldwide. A previous study in Brazil found at least four genotypes infecting cattle (Bos taurus), but only one in water buffalo (Bubalus bubalis). However, the small number of isolates examined from buffalo, all inhabiting nearby areas, has precluded evaluation of their diversity, host associations and geographical structure. To address these questions, we evaluated the genetic diversity and phylogeographical patterns of 25 isolates from water buffalo and 28 from cattle from four separate locations in Brazil and Venezuela. Multigene phylogenetic analyses of ssrRNA, internal transcribed spacer of rDNA (ITSrDNA), 5SrRNA, glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH), mitochondrial cytochrome b (Cyt b), spliced leader (SL) and cathepsin L-like (CATL) sequences positioned all isolates from sympatric and allopatric buffalo populations into the highly homogeneous genotype TthIA, while the cattle isolates were assigned to three different genotypes, all distinct from TthIA. Polymorphisms in all of these sequences separated the trypanosomes infecting water buffalo, cattle, sheep, antelope and deer, and suggested that they correspond to separate species. Congruent phylogenies inferred with all genes indicated a predominant clonal structure of the genotypes. The multilocus analysis revealed one monophyletic assemblage formed exclusively by trypanosomes of ruminants, which corresponds to the subgenus T. (Megatrypanum). The high degree of host specificity, evidenced by genotypes exclusive to each ruminant species and lack of genotype shared by different host species, suggested that the evolutionary history of trypanosomes of this subgenus was strongly constrained by their ruminant hosts. However, incongruence between ruminant and trypanosome phylogenies did not support host-parasite co-evolution, indicating that host switches have occurred across ruminants followed by divergences, giving rise to new trypanosome genotypes adapted exclusively to one host species.  相似文献   

14.
Trypanosoma rangeli, a parasite generally considered non-pathogenic for man, is the second species of human trypanosome to be reported from the New World. The geographical distribution of T. rangeli often overlaps with that of T. cruzi, the same vertebrate and invertebrate hosts being infected. Their differentiation thus becomes of real, practical importance, particularly as they share approximately half the antigenic determinants recognized by the humoral response. Little is known about the life cycle of T. rangeli in the vertebrate host, although thousands of human and wild animal infections have been reported. Recent studies have revealed 2 major phylogenetic lineages in T. rangeli having different characteristics, thus leading to better understanding of the epidemiology and interactions with this parasite's vertebrate hosts and triatomine vectors. Based on further genetic characterization analysis, the authors have proposed 2 alternative hypotheses and consider that T. rangeli could have had clonal evolution or have been subjected to speciation processes.  相似文献   

15.
Phylogenetic relationships within the kinetoplastid flagellates were inferred from comparisons of small-subunit ribosomal RNA gene sequences. These included 5 new gene sequences, Trypanosoma fallisi (2,239 bp), Trypanosoma chattoni (2,180 bp), Trypanosoma mega (2,211 bp), Trypanosoma neveulemairei (2,197 bp), and Trypanosoma ranarum (2,203 bp). Trees produced using maximum-parsimony and distance-matrix methods (least-squares, neighbor-joining, and maximum-likelihood), supported by strong bootstrap and quartet-puzzle analyses, indicated that the trypanosomes are a monophyletic group that divides into 2 major lineages, the salivarian trypanosomes and the nonsalivarian trypanosomes. The nonsalivarian trypanosomes further divide into 2 lineages, 1 containing trypanosomes of birds, mammals, and reptiles and the other containing trypanosomes of fish, reptiles, and anurans. Among the giant trypanosomes, T. chattoni is clearly shown to be distantly related to all the other anuran trypanosome species. Trypanosoma mega is closely associated with T. fallisi and T. ranarum, whereas T. neveulemairei and Trypanosoma rotatorium are sister taxa. The branching order of the anuran trypanosomes suggests that some toad trypanosomes may have evolved by host switching from frogs to toads.  相似文献   

16.
Blood smears and blood lysate samples from freshwater fishes captured in the Okavango Delta, Botswana, were examined to determine whether their trypanosomes were all Trypanosoma mukasai, a species of supposed broad host specificity and widespread existence across Africa. Trypanosomes and/or babesiosomes occurred in 20/32 blood smears, and morphometric analysis of trypanosomes from 13/32 smears showed features suggestive of T. mukasai, including nuclear indices consistently >1. In 16/32 blood lysate samples from which DNA was extracted, trypanosome DNA was detected in 12/16 by PCR (polymerase chain reaction), using trypanosome-specific ssu rRNA gene primers. Two samples positive for trypanosomes in blood smears yielded no amplifiable trypanosome DNA, but 4 samples with no detectable infection in blood smears were positive for trypanosome DNA, suggesting an overall trypanosome prevalence rate of 17/32 (53%) among fishes and demonstrating the value of PCR in trypanosome recognition. Cloning and sequencing of the 12 amplified fragments revealed 2 genotypic groups among these fish trypanosomes. Group 1 trypanosomes were from cichlids and 3 families of catfishes, Group 2 from 2 types of catfishes. Sequence comparison showed that the consensus Group 1 sequence was most similar to that of Trypanosoma cobitis, representing European fish trypanosomes of the carassii type, while the consensus Group 2 sequence showed similarity with a trypanosome sequence from another African catfish, Clarias angolensis. It was concluded that the identification of T. mukasai remains a problem, but at least 2 genotypic groups of trypanosomes occur in Okavango Delta fishes, and catfishes in this region appear to contain both types.  相似文献   

17.
The blood meals of field-collected female Culex territans (Diptera: Culicidae) were concurrently assayed for the presence of trypanosomes and for vertebrate host identification. We amplified vertebrate DNA in 42 of 119 females and made positive identification to the host species level in 29 of those samples. Of the 119 field-collected Cx. territans females, 24 were infected with trypanosomes. Phylogenetic analysis placed the trypanosomes in the amphibian portion of the aquatic clade of the Trypanosomatidae. These trypanosomes were isolated from Cx. territans females that had fed on the frog species Rana clamitans, R. catesbeiana, R. virgatipes, and Rana spp. Results support a potential new lineage of dipteran-transmitted amphibian trypanosomes may occur within the aquatic clade. The frequency in which female Cx. territans acquire trypanosomes, through diverse feeding habits, indicates a new relationship between amphibian trypanosomes and mosquitoes that has not been examined previously. Combining Trypanosoma species, invertebrate, and vertebrate hosts to existing phylogenies can elucidate trypanosome and host relationships.  相似文献   

18.
Thirty nine specimens of passerine birds belonging to 19 species and eight families were investigated by blood smear technique in four localities of Southern Turkmenistan in 3-18 August 1991. The overall prevalence of infection was 59%. Protists from the orders Haemosporida (genera Haemoproteus, Plasmodium, Leucocytozoon), Kinetoplastida (Trypanosoma), and Adeleida (Hepatozoon), as well as Microfilaria were found. Haemoproteids (the prevalence of infection is 44%), leucocytozoids (23%), malarial parasites (13%) and trypanosomes (13%) were most frequently recorded. Only low chronic infections (< 1% of infected cells for the great majority of intracellular parasites, and a few trypanosomes and Microfilaria in each blood smear) were seen. Haemoproteus belopolskyi, H. balmorali, H. dolniki, H. magnus, H. minutus, H. fringillae, H. majoris, Leucocytozoon dubreuili, and Trypanosoma avium were recorded for the first time in Turkmenistan. The former five above-mentioned species of haemoproteids are new records for the fauna of Middle Asia. Gametocytes of leucocytozoids in fusiform host cells were found for the first time in passerine birds in the Holarctic. The host is Parus bokharensis. Due to the wide distribution and the opportunity to collect a large parasitological material using harmless for hosts methods, bird haemosporidian parasites can be used as convenient models for ecological and evolutionary biology studies in South Turkmenistan. The heavily infected Orphean Warbler Sylvia hortensis is an especially convenient host for such purposes.  相似文献   

19.
Cells of the parasitic, unicellular eukaryote Ichthyodinium chabelardi were isolated from eggs of sardine ( Sardina pilchardus ) and from a previously unrecognized host, bogue ( Boops boops ), off the Atlantic coast of Portugal. Immediately after release from the infected fish egg or newly hatched larva, I. chabelardi cells were spherical and non-motile. After few minutes, spherical cells became flagellated and motile. Following 2–3 days of incubation and several divisions, spherical flagellated cells developed a twisted elongate shape and moved vigorously. Sequences of the small-subunit ribosomal RNA gene (SSU rDNA) were identical for I. chabelardi of both hosts and so were sequences of ITS1, ITS2 and the 5.8S rRNA gene. This genetic similarity suggests that eggs of sardine and bogue were infected by one single population of I. chabelardi . The SSU rRNA gene sequence of I. chabelardi was, in turn, 97% similar to those of two identical Asian isolates of Ichthyodinium sp. Phylogenetic analyses showed high support for the inclusion of Ichthyodinium in the so-called Marine Alveolate Group I (MAGI). Two morphologically well-described genera, namely Ichthyodinium and Dubosquella , have now been shown to belong to this group of seemingly exclusively parasitic alveolates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号