首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: Neolactoglycolipids are derived from neolactotetraosylceramide (nLcOse4Cer). They are found during the embryonic and neonatal developmental periods in the rat cerebral cortex and disappear shortly after birth. These glycolipids are, however, abundant in the adult cerebellum. Lactotriosylceramide (LcOse3Cer):galactosyltrans- ferase (GT), which catalyzes the terminal step in the biosynthesis of nLcOse4Cer, was characterized in mammalian brain. The enzyme was highly specific for LcOse3Cer, with a terminal GlcNAcβ1 -3Gal-residue, and it did not catalyze the transfer of galactose to other glycolipids studied with alternate carbohydrate residues. The microsomal membrane enzyme required Mn2+ and a detergent for in vitro activity. The optimal pH was 7.4, and the Km value for LcOse3Cer was 34 μM (Vmax=~2 nmol/mg/h). The LcOse3Cer:GT was shown to be different from the GM2:GT and the soluble enzyme lactose synthase A. The specific activity of LcOse3Cer:GT was enriched fivefold higher in the white matter than in the gray matter of young adult rat brain, whereas GM2:GT was enriched only about 1.5-fold higher in the white matter. The developmental expression of LcOse3Cer:GT in the cerebral cortex and cerebellum was not correlative with the levels of nLcOse4Cer in these neural areas. Despite the complete absence of nLcOse4Cer in the cerebral cortex of animals older than 5 days, significant activity of the LcOse3Cer:GT was found even in the adult cortex. In cerebellum, the levels of nLcOse4Cer increased with development, but the specific activity of the enzyme was reduced by 50% soon after birth and then remained practically the same with development. The results indicate that LcOse3Cer:GT is not a regulatory enzyme that controls the expression of nLcOse4Cer and its derived neolactoglycolipids in the brain.  相似文献   

2.
The following neolacto glycolipids were identified and their developmental expression was studied in the rat cerebral cortex and cerebellum: Fuc1-3IIInLcOse4Cer,Fuc1-3VnLcOse6Cer and (Fuc)21-3III,3VnLcOse6Cer, as well as acidic glycolipids, NeuAc2-3IVnLcOse4Cer [nLM1], (NeuAc)22-3IVnLcOse4Cer [nLD1],O-acetyl (NeuAc)22-3IVnLcOse4Cer [OAc-nLD1] and their higher neolactosaminyl homologues NeuAc2-3VInLcOse6Cer [nHM1] and (NeuAc)22-3VInLcOse6Cer [nHD1]. These glycolipids were expressed in the cerebral cortex only during embryonic stages and disappeared postnatally. This loss was ascribed to the down regulation of the synthesis of the key precursor LcOse3Cer which is synthesized by the enzyme lactosylceramide:N-acetylglucosaminyl transferase. On the other hand in the cerebellum, these glycolipids increased with postnatal development due to increasing availability of LcOse3Cer. In the cerebellum, only nLM1 and fucosyl-neolactoglycolipids declined after postnatal day 10–15, perhaps due to regulation by other glycosyltransferases. Also, in the cerebellum, nLD1 and nHD1 were shown to be specifically associated with Purkinje cells and their dendrites in the molecular layer and with their axon terminals in the deep cerebellar nuclei, similar to other neolactoglycolipids shown previously.  相似文献   

3.
Neutral glycosphingolipids and gangliosides were isolated from3.7 x 109 primary bovine aortic endothelial cells and structurallycharacterized by immunological and chemical methods. Glucosyl-and lactosylceramide were detected as the main neutral glycosphingolipids(28% and 40% of total orcinol stain, respectively); LcOse3Cerand nLcOse4Cer were expressed to somewhat minor amounts (16%and 10% of total orcinol stain, respectively), and nLcOse6Ceroccurred only in trace quantities. No neutral glycosphingolipidsof the ganglio-series (GgOse3Cer and GgOse4Cer) and the globo-series(GbOse4Cer and the Forssman antigen) have been detected; onlytraces of GbOse3Cer were identified by TLC immunostaining. PositiveCD15 bands obtained by TLC overlay with anti-Galβ1–4(Fucl-3)GlcNAcβ1-Rantibody indicated the presence of lipid bound Lewisx antigen,whereas the isomeric Lewisa structure (Galβ1–3(Fuc1–4)GlcNAcβ1-R)was not detectable. GM3 substituted with Neu5Gc and Neu5Ac ina 2:1 ratio was the major ganglioside comprising about 95% withinthe whole ganglioside fraction. GM3-structures were furthercharacterized by FAB-MS and GC-MS of the native compounds andtheir permethylated derivatives. C18-sphingosine was the onlylong chain base, whereas variation occurred due to C24:0,24:1and C16 fatty acids. Terminally 2–3 sialylated neolacto-seriesgangliosides with nL-cOse4- and nLcOse6Cer (<5% of totalresordnol stain) were found in almost equal quantities, whereasno 2–6 sialylated counterparts were detected. Fucosylatedgangliosides with poly-N-acetyllactosaminyl chains (sialyl Lewisx,sialyl Lewisa, and VIM-2 antigen) and sulfoglucuronyl-neolactoseries structures with HNK-1 epitope were not detectable inthe acidic glycosphingoiipid fraction by TLC immunostaining.Gangliotetraose-type gangliosides GM1 and GD1a (<1 % of totalresorcinol stain) as well as traces of GD1b and GT1b have beendistinctly identified by combined choleragenoid-TLC-immunostainingand previous neur-aminidase treatment.The expression of dominantglycosphingolipids lactosylceramide and GM3(Neu5Gc) was provedby indirect immunofiuorescence microscopy of cell layers grownin chamber slides, each showing different plasma membrane andsubcellular distribution patterns. The results provide the basisfor investigation of the role of glycosphingolipids as cellsurface antigens of cellular interaction as well as receptorsfor blood components and mac-romolecules of the extracellularmatrix. gangliosides neutral glycosphingolipids antibodies Lewisx antigen TLC immunostaining  相似文献   

4.
Summary Glycosphingolipid biosynthesis was examined using [3H]-galactose as a precursor as rat L6 myoblasts fused to form multinucleated myotubes. Incorporation of label into neutral glycolipids decreased steadily as the population of myotubes increased, so that final biosynthesis was one-half that observed with myoblasts (p < 0.02). Conversely, ganglioside biosynthesis doubled during myoblast confluency (p < 0.02) and then decreased as myotubes formed. Qualitatively, L6 cells synthesized large amounts of ganglioside GM3 during all myogenic phases. The major neutral glycosphingolipid products were lactosylceramide and paragloboside (nLcOse4Cer). Few changes in TLC autoradiographic patterns were noted during differentiation, with the exception of a slight decrease in ganglioside GM1. The results indicate that the biosynthesis of glycosphingolipids is tightly regulated during myogenesis in vitro and suggest a role for membrane gangliosides in muscle cell differentiation.Abbreviations GM1 II3NeuAc-GgOse4Cer - GM3 II3NeuAc-GgOse2Cer - MG4 IV3NeuAc-nLcOse4Cer - MG6 VI3NeuAc V4Gal-IV3GlcNAc-nLcOse4Cer - TLC Thin-Layer Chromatography - DMEM Dulbecco's Modified Eagles' Medium  相似文献   

5.
EnterotoxigenicEscherichia coli (ETEC) strains expressing F5 (K99) fimbriae cause diarrhoea in the young animal through adhesion to specific sialoglycolipids of the small intestine surface. We studied here an infant mouse diarrhoea model, as CBA infant mice are susceptible to F5-positive ETEC infection, whereas DBA/2 ones are resistant. In an attempt to determine an enzymatic basis for susceptibility and resistance, we investigated the intestine ganglioside pattern in relation to the activity of glycosyltransferases responsible for the globo- and ganglio-series. We observed that the intestine of susceptible CBA infant mice displayed a characteristic sialoglycolipid pattern containing mainly the F5 receptors. The two murine strains differed in the relative activities of galactosyltransferases (GbOse3Cer and GM1 synthases),N-acetylgalactosylaminyltransferases (GA2 and GM2 synthases) and sialyltransferases (GM3 and GD3 synthases). An elevated GM3-synthase activity was observed in the intestine of susceptible CBA infant mice, at the age of high susceptibility. Hence, we conclude that the marked specificity of mouse type correlated with susceptibility and resistance to F5-positive ETEC infection which could be controlled through the regulation of glycosyltransferase activities.Abbreviations NeuAc N-acetylneuraminic acid - NeuGc N-glycolylneuraminic acid - Glc glucose - GalNAc N-acetylgalactosamine - Gal galactose - Car ceramide - LacCer lactosylceramide (Galß-4Glcß1-1Cer) - GA2 asialo-GM2 (GgOse3Cer) - GA1 asialo-GM1 (GgOse4Cer) - NeuAc/NeuGc-GMla II3 NeuAc/NeuGc-GgOse4Cer - NeuAc/NeuGc-GM1a IV3 NeuAc/NeuGc-GgOse4Cer - NeuAc/NeuGc-GM2 II3 NeuAc/neuGc-GgOse3Cer - NeuAc/NeuGc-GM3, II3 NeuAc/NeuGc-LacCer; NeuAc/NeuGc-GD1a, IV3 NeuAc/NeuGc, II3 NeuAc/NeuGc-GgOse4Cer; NeuAc/NeuGc-GD1b II3 (NeuAc/NeuGc)2-GgOse4Cer - NeuAc/NeuGc-GD1c IV3 (NeuAc/NeuGc)2-GgOse4Cer - NeuAc/NeuGc-GD2, II3 (NeuAc/NeuGc)2-GgOse3Cer; NeuAc/NeuGc-GD3, II3 (NeuAc/NeuGc)2-Lac Cer; NeuAc/NeuGcGT1a IV3 (NeuAc/NeuGc)2, II3 NeuAc/NeuGc-GgOse4Cer - NeuAc/neuGc-GT1b IV3 NeuAc/NeuGc, II3 (NeuAc/NeuGc)2-GgOse4Cer - NeuAc/NeuGc-GT1c II3 (NeuAc/NeuGc)3-GgOse4Cer; NeuAc/NeuGc-GT2, II3 (NeuAc/NeuGc)3-GgOse3Cer - NeuAc/NeuGc-GT3 II3 (NeuAc/NeuGc)3-Lac Cer - NeuAc/NeuGc-GQ1b IV3 (NeuAc/NeuGc)2, II3 (NeuAc/NeuGc)2-GgOse4Cer - NeuAc/NeuGc-GQ1c IV3 NeuAc/NeuGc, II3 (NeuAc/NeuGc)3-GgOse4Cer - NeuAc/NeuGc-GP1c IV3 (NeuAc/NeuGc)2, II3 (NeuAc/NeuGc)3-GgOse4Cer - GD, GT and GQ di-, tri- and tetra-sialoglangliosides. NeuGc-SPG, IV3 NeuGc-nLcOse4Cer. Glycosyltransferases assayed in this work areN-acetylgalactosaminyltransferases - UDP-GalNAc lactosylceramide 1-4N-acetylgalactosaminyltransferase or GA2 synthase (EC 2.4.1-) and UDP-GalNAc:(N-acetylneuraminyl)-lactosylceramide 1-4N-acetylgalactosaminyltransferase or GM2 synthase (EC 2.4.1.92) - sialyltransferases CMP-N-acetylneuraminate: lactosylceramide 2–3 sialyltransferase (sialyltransferases I and IV) or GM3 synthase (EC 2.4.99.-) and CMP-N-acetylneuraminate:(N-acetylneuraminyl) lactosylceramide 2-8 sialyltransferase (sialyltransferase II) or GD3 synthase (EC 24.99.8) - galactosyltransferases UDP-galactose:N-acetylgalactosaminyl-(N-acetylneuraminyl) lactosylceramide 1-3 galactosyltransferase (galactosyltransferase II) or GM1a synthase (EC 2.4.1.62) and UDP-galactose:lactosylceramide 1-4 galactosyltransferase or GbOse3Cer synthase (EC 2.4.1-)  相似文献   

6.
We have purified and characterized a bovine brain pentaglycosylceramide as Lewis X and identified it in human and rat brain using anti-Lewis X (anti-SSEA 1) monoclonal antibody. Neutral glycosphingolipid expression in developing rat brain has been examined by digoxigenin immunostaining and TLC-immunostaining using anti-SSEA 1 and anti-GgOse4Cer (GA1) monoclonal antibodies. Five transient Lewis X-series bands were identified in brain at embryonic day 15 that disappear by postnatal day 5 (one disappears at embryonic day 18). Gangliotetraosylceramide (GA1) first appears at embryonic day 21 and increases in concentration with age until postnatal day 21. In addition, we have purified another minor brain neutral glycosphingolipid and tentatively identified it as a Lewis X-series glycolipid by gas chromatography-mass spectrometry analysis followed by TLC-immunostaining with anti-SSEA 1 antibody.Abbreviations Cer Ceramide, GlcCer, Glc1-1Cer - LacCer Gal1-4GlcCer - CTH Gal1-4LacCer - nLcOse4Cer Gal1-4GlcNAc1-3LacCer - nLcOse5Cer Gal1-3nLcOse4Cer - GgOse4Cer Gal1-3GalNAc1-4LacCer - DPA diphenylamine-aniline-phosphoric acid - SSEA stage-specific embryonic antigen - NGSL neutral glycosphingolipid - TLC thin-layer tomography - HPTLC high performance thin-layer chromatography - GA1 gangliotetraosyleramide - SAT-2 sialytransferase-2 - GalNAcT-1 galactosaminyltransferase-1 - DIG-IS digoxigenin-immunostaining - PMAAS partially methylated alditol acetates - DCE dichloroethane - TLC-IS TLC-immunostaining - (Lex) Lewis X - NK murine natural killer  相似文献   

7.
The two clonal murine muscle cell lines G7 and G8, originally derived from the M114 line [20], represent unique models for comparative studies of myogenesis. Glycolipid synthesis was examined during differentiation using [3H]-galactose and [3H]-glucosamine as precursors. Upon G7 contact glucosylceramide labeling increased and nLcOse5Cer labeling stopped. During membrane fusion, glucosylceramide labeling stopped and lactosylceramide became the major synthetic product. G8 cells presented a different pattern, with increased labeling of GbOse3Cer during myogenesis. The major ganglioside synthesized by both myoblasts was GM3, and more complex structures were observed following completion of myotube formation. Total glycopeptide labeling increased when G8 myoblasts fused and remained elevated in myotubes, whereas no differences during fusion of G7 cells were noted. Upon comparison of the two clonal lines, the only consistent observation was a significant increase in the synthesis of total gangliosides and neutral glycolipid during cell contact and membrane fusion (p < 0.02). The results suggest that changes in the synthesis of specific glycolipid structures during myogenesis are unique to each muscle cell line examined. However, transient increases in synthesis of total myoblast gangliosides and neutral glycolipids may be a more general phenomenon, possibly by curbing proliferation or by altering myoblast membrane fluidity characteristics during differentiation.Abbreviations MG6 VI3NeuAc-V4Gal-IV3GlcNAc-nLcOse4Cer - TLC thin-layer chromatography - HPTLC high performance thin-layer chromatography - Gal galactose - GlcNH glucosamine - PBS phosphate buffered saline - CK creatine kinase  相似文献   

8.
We have studied the effects ofD-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) and itsL-enantiomer on glycosphingolipids in cultured normal human kidney proximal tubular cells. We found thatD-PDMP exerted a concentration-dependent reduction in the metabolic labelling and cellular levels of glucosylceramide (GlcCer), lactosylceramide (LacCer), and the globo-series glycosphingolipids, GbOse3Cer and GbOse4Cer. It also directly inhibited the activity of UDP-glucose:ceramide 1 4-glucosyltransferase (GlcT-1) and UDP-galactose: GlcCer 1 4 galactosyltransferase (GalT-2). In contrast,L-PDMP had opposite effects on the metabolic labelling of GlcCer, LacCer, and GbOse3Cer. The levels of GlcCer and LacCer were increased, while the labelling and level of GbOse4Cer were strongly reduced. Purified GalT-2 from human kidney was inhibited byD-PDMP and stimulated byL-PDMP. It appears likely that the different glycosphingolipid glycosyltransferases possess similar binding sites for the ceramide moiety, which are blocked by binding toD-PDMP and, in the case of GbOse4Cer synthase, byL-PDMP as well. The stimulatory effects ofL-PDMP on GlcCer and LacCer synthases may be the result of binding to a modulatory site on the glycosyltransferases; in intact cells, the enzyme-analog complex may afford protection against the normal catabolic inactivation of the enzymes.Abbreviations GalT-2 UDP-galactose:GlcCer -galactosyltransferase - GbOse3Cer Gal1 4Gal1 GlcCer - GbOse4Cer GalNAc1 3Gal1 4Gal1 GlcCer - GlcCer glucosylceramide - GlcT-1 UDP-glucose:ceramide -glucosyltransferase - GSLs glycosphingolipids - LacCer lactosylceramide - PDMP threo-1-phenyl-2-decanolyamino-3-morpholino-1-propanol  相似文献   

9.
Influenza A and Sendai viruses bind toneolacto-series gangliosides isolated from human granulocytes. Differences in receptor specificity of influenza viruses A/PR/8/34 (H1N1), A/X-31 (H3N2), and parainfluenza Sendai virus (HNF1, Z-strain) were determined by two direct solid phase binding assays: the overlay technique, which combines high-resolution in the separation of gangliosides on thin-layer chromatograms with direct binding; and the microwell adsorption assay as a convenient binding assay which is performed in microtitre wells to estimate the avidity of binding to an isolated ganglioside. Both methods were applied for comparative binding studies. Viruses were found to exhibit specificity for oligosaccharides and sialic acids as well as for chain length of the neutral carbohydrate backbone, whereas differing fatty acids (C24:1 and C16:0) in the ceramide portion had no impact on virus adsorption. Terminal sialyloligosaccharides Neu5Ac2-3Gal1-4Glc-R of GM3, and Neu5Ac2-3Gal1-4GlcNAc-R as well as Neu5Ac2-6Gal1-4GlcNAc-R ofneolacto-series gangliosides with nLcOse4Cer and nLcOse6Cer backbone, exhibited significant specific receptor activity towards the different viruses. To compare the data revealed from both test systems, values of virus binding were ascertained by a non-parametric statistical approach based on rank correlation. The rank correlation coefficientr s was calculated according to Spearman from each virus binding towards GM3, IV3Neu5Ac-nLcOse4Cer, IV6Neu5Ac-nLcOse4Cer and VI3Neu5Ac-nLcOse6SCer. The rank correlation coefficients 0.74, 0.95 and 0.92, which were determined for A/PR/8/34 (H1N1), A/X-31 (H3N2) and Sendai virus (HNF1, Z-strain), respectively, indicated that both assays generate highly correlated experimental data. Based on these results, analyses of virus binding on thin-layer chromatograms as well as in microwells were found equivalent tools for ganglioside receptor studies. Abbreviations: BSA, bovine serum albumin; GSL(s), glycosphingolipids; HPTLC, high performance thin-layer chromatography; PBS, phosphate buffered saline; Neu5Ac,N-acetylneuraminic acid [35];r s = rank correlation coefficient according to Spearman. The designation of the glycosphingolipids follows the IUPAC-IUB recommendations [36]. LacCer or lactosylceramide, Gal1-4Glc1-1Cer; lacto-N-neotetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; lacto-N-norhexaosylceramide or nLcOse6Cer, Gal1-4GlcNAc1-3Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; GM3 (according to Svennerholm [37]) or II3Neu5AcLacCer.  相似文献   

10.
The structures of gangliosides from human granulocytes were elucidated by fast atom bombardment mass spectrometry and by gas chromatography/mass spectrometry as their partially methylated alditol acetates. In human granulocytes besides GM3 (II3Neu5Ac-LacCer), neolacto-series gangliosides (IV3Neu5Ac-nLcOse4Cer, IV6Neu5Ac-nLcOse4Cer and VI3Neu5Ac-nLcOse6Cer) containing C24:1, and to some extent C22:0; and C16:0 fatty acid in their respective ceramide portions, were identified as major components. In this study we demonstrate that gangliosides from human granulocytes, the second most abundant cells in peripheral blood, can serve as receptors for influenza viruses A/PR/8/34 (H1N1), A/X-31 (H3N2), and a parainfluenza virus Sendai virus (HNF1, Z-strain). Viruses were found to exhibit specific adhesion to terminal Neu5Ac2-3Gal and/or Neu5Ac2-6Gal sequences as well as depending on the chain length of ganglioside carbohydrate backbones from human granulocytes, these important effector cells which represent the first line of defence in immunologically mediated reactions. Abbreviations: FAB-MS, fast atom bombardment mass spectrometry; GC/EIMS, gas chromatography/electron impact mass spectrometry; GSL(s) glycosphingolipids; HPTLC, high performance thin-layer chromatography; Neu5Ac,N-acetylneuraminic acid [26], PFU, plaque forming unit. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations, and the ganglioside nomenclature system of Svennerholm was used. LacCer or lactosylceramide, Gal1-4Glc1-1Cer gangliotetraosylceramide or GgOse4Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; lacto-N-tetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4-Glc1-1Cer; lacto-N-norhexaosylceramide or nLcOse6Cer, Gal1-4GlcNAc1-3Gal1-4GlcNAc1-3Gal 1-4-Glc1-1Cer; GM3, II3Neu5Ac-LacCer; GM1, II3Neu5Ac-GgOse4Cer; GD1a, IV3Neu5Ac, II3Neu5Ac-GgOse4Cer; GD1b, II3(Neu5Ac)2-GgOse4Cer; GT1b, IV3Neu5Ac, II3(Neu5Ac)2-GgOse4Cer; GQ1b, IV3(Neu5Ac)2, II3(Neu5Ac)2-GgOse4Cer; sialyllacto-N-tetraosylceramide, IV3Neu5Ac/IV6Neu5Ac-nLcOse4Cer; sialyllacto-N-norhexaosylceramide or i-active ganglioside, VI3Neu5Ac-nLcOse6Cer.  相似文献   

11.
A rapid procedure is described for the separation of CMP-sialic acid:lactosylceramide sialyltransferase reaction components using Sep Pak C18 cartridges. The quantitative separation of the more polar nucleotide sugar, CMP-sialic acid, and its free acid from the less polar GM3-ganglioside is simple and rapid relative to previously described methods. Recovery of GM3 is optimized by the addition of phosphatidylcholine to the reaction mixture prior to the chromatographic step. Using rat liver Golgi membranes as a source of CMP-sialic acid: lactosylceramide sialyltransferase activity (GM3 synthase; ST-1), the transfer of [14C] sialic acid from CMP-[14C] sialic acid to lactosylceramide can be quantified by this assay. The procedure is reliable and may be applicable to the isolation of ganglioside products in otherin vitro glycosyltransferase assays.Abbreviations GM3 GM3-ganglioside - II3NeuAc-LacCer NeuAc2-3Gal1-4Glc1-1Cer - GD1a GD1a-ganglioside, IV3NeuAc, II3NeuAc-GgOse4Cer, NeuAc2-3Gal1-3GalNac1-4(NeuAc2-3)Gal1-4Glc1-1Cer - GD3 GD3-ganglioside, II3(NeuAc)2LacCer, NeuAc2-8NeuAc2-3Gal1-4Glc1-1Cer - GgOse4Cer asialo-GM1 Gal1-3GalNAc1-4Gal1-4Glc1-1Cer - FucGMI fucosyl-GMI-ganglioside, Fuc1-2Gal1-3GalNAc1-4Gal1-4 Glc1-1Cer - ST-1 GM3 synthase, CMP-sialic acid:lactosylceramide sialyltransferase - LacCer lactosylceramide, Gal1-4Glc1-1Cer - CMP-NeuAc cytidine 5-monophospho-N-acetylneuraminic acid - PC phosphatidylcholine - PMSF phenylmethylsulfonyl fluoride  相似文献   

12.
Changes of lipid, free fatty acid, protein, DNA, and RNA content in proximal and distal segments of regenerating sciatic nerve, from 14 to 120 days after crush, were determined. During the early stage of Wallerian degeneration, a marked decrease of phospholipid, cerebroside and sulfatide content and, in contrast, a marked increase of protein, DNA, RNA, and free fatty acid content, in the distal segment of crushed nerve compared to control, was observed. A gradual increase of phospholipid, cerebroside, and sulfatide levels, approaching normal values, and a gradual slope in the increase of protein, DNA, RNA, and free fatty acid levels over the ensuing time periods of regeneration was seen. Total cholesterol content was relatively constant during regeneration, slightly increasing at day 120. The activity of 2,3-cyclic nucleotide 3-phosphodiesterase (CNPase) of myelin fraction purified from distal segment of regenerating sciatic nerve showed a significant increase in the 30–120 day regenerating period. A marked increase of the incorporation of [2-3H]glycerol and of [Me-14C]choline into myelin lipids of distal segment of regenerating nerve, was found. Labeling of myelin lipids with [3H]oleic acid (injected intravenously seven days before crush) support the evidence that a similar pattern of degeneration exists between two different types of trauma, i.e. nerve crush or cut. The findings suggest that, in the distal segment of crushed nerve, the lipid content as well as the myelin lipid synthesis increase as the regeneration period proceeds.  相似文献   

13.
The expression of neutral glycosphingolipids and gangliosides has been studied in human skeletal and heart muscle using indirect immunofluorescence microscopy. Transversal and longitudinal cryosections were immunostained with specific monoclonal and polyclonal antibodies against the neutral glycosphingolipids lactosylceramide, globoside, Forssman glycosphingolipid, gangliotetraosylceramide, lacto-N-neotetraosylceramide and against the gangliosides GM3(Neu5Ac) and GM1(Neu5Ac). To confirm the lipid nature of positive staining, control sections were treated with methanol and chloroform:methanol (1:1) before immunostaining. These controls were found to be either negative or strongly reduced in fluorescence intensity, suggesting that lipid bound oligosaccharides were detected. In human skeletal muscle, lactosylceramide was found to be the main neutral glycosphinogolipid. Globoside was moderately expressed, lacto-N-neotetraosylceramide and gangliotetraosylceramide were minimally expressed and Forssman glycosphingolipid was not detected in human skeletal muscle. The intensities of the immunohistological stains of GM3 and GM1 correlated to the fact that GM3 is the major ganglioside in skeletal muscle whereas GM1 is expressed only weakly. In human heart muscle globoside was the major neutral glycosphingolipid. Lactosylceramide and lacto-N-neotetraosylceramide were moderately expressed, gangliotetraosylceramide was weakly expressed and the Forssman glycosphingolipid was not expressed at all in cardiac muscle. GM3 and GM1 were detected with almost identical intensity. All glycosphingolipids were present in plasma membranes as well as at the intracellular level. Abbreviations used: BSA, bovine serum albumin; DAPI, 4,6-diamidine-2-phenylindole-dihydrochloride; DTAF, fluorescein isothiocyanate derivative; GSL(s), glycosphingolipid(s); Neu5Ac,N-acetylneuraminic acid [50]; PBS, phosphate buffered saline. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [51] and the nomenclature of Svennerholm [52]. Lactosylceramide or LacCer, Gal1-4Glc1-1Cer; gangliotriaosylceramide or GgOse3Cer, GalNAc1-4Gal1-4Glc1-1Cer; globotriaosylceramide or GbOse3Cer, Gall-4Gall-4Glcl-1Cer; gangliotetraosylceramide or GgOse4Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; globotetraosylceramide or GbOse4Cer, GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; lacto-N-neotetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; Forssman GSL or GbOse3Cer, GalNAc1-3GalNAc1-3Gal1-4Gal1-4Gle1-1Cer; GM3, II3Neu5Ac-LacCer; GM2, II3Neu5Ac-GgOse3Cer; GM1, II3Neu5Ac-GgOse4Cer; GD3 II3(Neu5Ac)2-LacCer; GD2, II3(Neu5Ac)2-GgOse3Cer; GD1a, IV3Neu5Ac, II3Neu5Ac-GgOse4Cer; GD1b, II3(Neu5Ac)2-GgOse4Cer.  相似文献   

14.
Sulfoglucuronyl glycolipids (SGGLs) are temporally and spatially regulated molecules present in the nervous system during its development. The characteristics of the rat brain enzyme glucuronyltransferase involved in the biosynthesis of SGGLs have been described. The enzyme catalyzes the transfer of glucuronic acid (GlcA) from UDP-GlcA to terminal galactose of the neolacto (type 2) series of glycolipids to form beta 1-3-linked glucuronyl neolacto glycolipids. The enzyme was highly specific for the neolacto series of acceptor glycolipids, neolactotetraosylceramide (nLcOse4Cer), neolactohexaosylceramide (nLcOse6-Cer), and neolactooctaosylceramide (nLcOse8Cer) and was different from the drug-inducible phenol:GlcA transferase. Considerable activity of GlcA transferase was present in the adult rat cerebral cortex, even though SGGLs almost completely disappeared from the cortex by postnatal day 15. In the cerebellum, although levels of SGGLs increased with development, the specific activity of GlcA transferase declined. The results indicated that GlcA transferase was not a regulatory enzyme controlling the expression of SGGLs. Measurements of the levels of nLcOse4Cer and nLcOse6Cer in these neural tissues indicated that the availability of these precursors may regulate the differential expression of SGGLs seen previously. GlcA transferase was significantly reduced in the cerebellar Purkinje cell degenerating murine mutant (pcd/pcd), which is consistent with the loss of SGGLs in the cerebellum of this mutant and specific association of these glycolipids with Purkinje cells.  相似文献   

15.
We have used two methods to evaluate the level of expression of Gb3Cer in several human leukaemia/lymphoma cell lines representative of the myeloid (K562, KG-1, HL-60, and THP-1) and lymphoid (Reh, Daudi, Raji, RPMI 8226, CCRF-CEM, MOLT-4) lineages blocked at varied stages of differentiation. TLC immunostaining of glycolipid extracts with a monoclonal antibody, 12-101, and FACS analysis with the same antibody were used to demonstrate that the expression of Gb3Cer in neoplastic myeloid and lymphoid cells is both lineage and differentiation dependent. As a possible control point in the regulated expression of Gb3Cer we have investigated the first committed step in the synthesis of globo series glycosphingolipids that involves UDP-Gal:LacCer (1,4)-galactosyltransferase (1,4GalT). We present the first characterization of this enzyme in a human myeloid cell line using an ELISA-based assay, which was subsequently used to measure 1,4GalT activity in the human leukaemia/lymphoma cell lines. In general, there is a positive correlation between the levels of endogenous Gb3Cer and the level of the 1,4GalT activity. However, in two cases (KG-1 and CCRF-CEM) the level of enzyme activity did not correspond to the level of Gb3Cer expression.  相似文献   

16.
A novel mono-sulfated glycosphingolipid based on the gangliotriaose core structure was isolated from rat kidney. The isolation procedure involved extraction of lipids with chloroform/methanol, mild alkaline methanolysis, column chromatographies with anion exchangers and silica beads. The structure was characterized by compositional analysis, FTIR spectroscopy, methylation analysis,1H-NMR spectroscopy and negative-ion liquid secondary ion mass spectrometry (LSIMS) using the intact glycolipid and its desulfation product. The two dimensional chemical shift correlated spectroscopy provided information on the sugar sequence as well as anomeric configurations, and indicated the presence of a 3-O-sulfatedN-acetylgalactosamine within the molecule. Negative-ion LSIMS with high- and low-energy collision-induced dissociation defined the sugar sequence and ceramide composition, confirming the presence of a sulfatedN-acetylgalactosamine at the non-reducing terminus. From these results, the complete structure was proposed to be HSO3-3GalNAc1-4Gal1-4Glc1-1Cer (Gg3Cer III3-sulfate, SM2b). Abbreviations: Abbreviations for sulfated glycolipids [17] follow the modifications of the nomenclature system of Svennerholm for gangliosides [37], and the designation of the other glycosphingolipids follows the IUPAC-IUB recommendations [38]. Cer, ceramide; LacCer, lactosylceramide, Gal1-4Glc1-1Cer; Gg3Cer, gangliotriaosylceramide, GalNAc1-4Gal1-4Glc1-1Cer; Gg4Cer, gangliotetraosylceramide, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; iGb4Cer, isoglobotetraosylceramide, GalNAc1-3Gal1-3Gal1-4Glc1-1Cer; Gb4Cer, globotetraosylceramide, GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; SM4s, galactosylceramide sulfate, GalCer I3-sulfate; SM3, lactosylceramide sulfate, LacCer II3-sulfate; SM2a, Gg3Cer II3-sulfate; SM2b, Gg3Cer III3-sulfate; SB2, Gg3Cer II3,III3-bis-sulfate; SM1a, Gg4Cer II3-sulfate; SM1b, Gg4Cer IV3-sulfate; SB1a, Gg4Cer II3,IV3-bissulfate; GLC, gas-liquid chromatography; GC-MS, gas chromatography-mass spectrometry; DQF, double quantum filtered; COSY, chemical-shift-correlated spectroscopy; LSIMS, liquid secondary ion mass spectrometry; CID, collision-induced dissociation; MS/MS, tandem mass spectrometry.  相似文献   

17.
Abstract: Ganglioside composition of rat trigeminal nerve was studied during development in order to understand the changes that occur as a result of cellular differentiation in the nerve. The ganglioside composition of the trigeminal nerve was entirely different from that of brain. The major gangliosides in adult trigeminal nerve were GM3, GD3, and LM1 (sialosyl-lactoneotetraosylceramide or sialosylparagloboside). The structure of LM1 and other gangliosides was established by enzymatic degradation and by analysis of the products of acid hydrolysis. At 2 days after birth, when the Schwann cells were immature, GM3 and GD3 were the major gangliosides in the nerve, 50 and 18 mol %, respectively. As the nerve developed and Schwann cells proliferated and myelinated the axons, the mol % of GM3 and GD3 reduced and that of LM1 steadily increased. Polysialogangliosides did not change drastically with nerve development. The rate of deposition of LM1 in the nerve with age was very similar to that of myelin marker lipids, cerebrosides, and sulfatides; thus, deposition appears to be localized mainly in the rat nerve myelin. LM1 also had long-chain fatty acids 22:0 and 24:0, which are not usually found in CNS gangliosides. The ganglioside pattern of the rat trigeminal nerve was very similar to that of rat sciatic nerve, but was different from that of rabbit and chicken sciatic nerve. The activity of the two key enzymes involved in the metabolism of GM3, viz., CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase and UDP-N-acetylgalactosamine:GM3-N-acetylgalactosaminyltransferase, was also studied during development of the nerve and brain. The developmental profiles of both enzymes were consistent with the amounts of GM3 present in the nerve.  相似文献   

18.
《Glycoconjugate journal》1995,12(5):721-728
The expression of neutral glycosphingolipids (GSLs) and gangliosides was investigated in cryosections of normal mouse skeletal muscle and in muscle of mice with neuromuscular diseases using indirect immunofluorescence microscopy. Transversal and longitudinal sections were immunostained with specific polyclonal antibodies against lactosylceramide, lacto-N-neotetraosylceramide, globoside, GM3(Neu5Ac), GM3(Neu5Gc) and GM1(Neu5Ac) as well as monoclonal anti-Forssman GSL antibody. In normal CBA/J mouse muscle (control) the main immunohistochemically detected ganglioside was GM3(Neu5Ac) followed by moderately expressed GM3(Neu5Gc) and GM1. The neutral GSLs lactosylceramide and globoside were stained with almost identical, high fluorescence intensity. Low amounts of lacto-N-neotetraosylceramide and trace quantities of Forssman GSL were immunostained. All GSLs were detected in the sarcolemma, but also in considerable amounts at the intracellular level. Mice with neuromuscular diseases were the A2G-adr mouse mutant (a model for human recessive myotonia of Becker type), the BL6-wr mutant (a model for motor neuron disease) and the BL10-mdx mouse mutant (a model for human Duchenne muscular dystrophy). No changes in GSL expression were found in the A2G-adr mouse, while muscle of the BL6-wr mouse showed increased intensity of immunofluorescence in stainings with anti-lactosylceramide and anti-GM3(Neu5Ac) antibodies. Muscle of BL10-mdx mice showed the most prominent changes in GSL expression with reduced fluorescence intensity for all antibodies. Major differences were not observed in the intensities of GSLs, but there were significant differences in the patterns of distribution on plasma membrane and at the subcellular level. The exact nature and pathogenesis of these changes should be elucidated since such investigations could furnish advances in understanding the functional role of neutral GSLs and gangliosides in normal as well as in diseased muscle. Abbreviations: BSA, bovine serum albumin; DAPI, 4, 6-diamidine-2-phenylindole-dihydrochloride; DTAF, dichlorotriazinylamino-fluorescein; GSL(s), glycosphingolipid(s); Neu5Ac,N-acetylneuraminic acid; Neu5Gc,N-glycolylneuraminic acid [53]; PBS, phosphate buffered saline. The designation of the following glycosphingolipids follows the IUPAC-IUB recommendations [54] and the nomenclature of Svennerholm [55]. Lactosylceramide or LacCer, Gal1-4Glc1-1Cer; gangliotriaosylceramide or GgOse3Cer, GalNAc1-4Gal1-4Glc1-1Cer; globotriaosylceramide or GbOse3Cer, Gal1-4Gal1-4Glc1-1Cer; gangliotetraosylceramide or GgOse3Cer, Gal1-3GalNAc1-4Gal1-4Glc1-1Cer; globotetraosylceramide or GbOse4Cer, GalNAc1-3Gal1-4Gal1-4Glc1-1Cer; lacto-N-neotetraosylceramide or nLcOse4Cer, Gal1-4GlcNAc1-3Gal1-4Glc1-1Cer; Forssman GSL or GbOse5Cer, GalNAc1-3GalNAc1-3GAl1-4Gal1-4Glc1-1Cer; GM3, II3Neu5Ac-LacCer; GM1, II3Neu5Ac-GgOse4Cer.  相似文献   

19.
Glycolipids of peripheral leukocytes which had been used for the production of interferon were separated into oligoglycosylceramides, polyglycosylceramides and polyglycosylpeptides (erythroglycan). Neutral oligoglycosylceramides comprised glucosylceramide, galactosylceramide, lactosylceramide, lactotriaosylceramide, globotriaosylceramide andneolactotetraosylceramide. Globotetraosylceramide was not detected. Glycolipids which were more complex thanneolactotetraosylceramide belonged exclusively to theneolacto series of compounds and were essentially unbranched at galactopyranosyl residues. The polyglycosylceramide fraction contained a glycolipid with a probable structure Gal1-4(Fuc1-3) GlcNAc1-3Gal1-4GlcNAc1-3 Gal1-4GlcNAc1-3Gal1-4Glc1-1ceramide. Polyglycosylpeptides were found only in trace amounts and were also unbranched at galactopyranosyl residues. All glycoconjugates studies did not contain significant amounts of carbohydrate structures derived from ABH immunodominant groups.Nomenclature Gal1-4Gal1-4GlcCer Lactotrioasylcermide (LcOse3Cer) - Gal1-4Gal1-4GlcCer globotriaosylceramide, (GbOse4Cer) - GalNAc1-3Gal1-4 Gal1-4GlcCer globoside (globotetraosylceramide, GbOse4Cer) - Gal1-4GlcNAc1-3Gal1-4GlcCer paragloboside (lacto-N-neo tetraosylceramide,nLcOse4Cer)  相似文献   

20.
The properties of a rat brain glucuronyltransferase, which is presumed to be associated with the biosynthesis of the HNK-1 epitope on sulfoglucuronyl glycolipids, are described. The enzyme required divalent cations for reaction, with maximal activity at 10mm Mn2+, and exhibited a dual optimum at pH 4–5 and pH 6 depending upon the buffer used, with the highest activity at pH 4.5 in MES buffer. This enzyme strictly recognized the Gal1-4GlcNAc terminal structure, and was highly specific for neolacto (type 2) glycolipids as acceptor. The enzyme was localized specifically in the brain, and was barely detected in other issues, including the thymus, spleen, liver, kidney, lung, and sciatic nerve fibres. Phosphatidylinositol and phosphatidylserine increased the enzymatic reaction 4.4- and 2.3-fold, respectively, whereas phosphatidylcholine slightly decreased the rate.Abbreviations GlcA glucuronic acid - Lc-PA14 lactotetraose-phenyl-C14H29 - nLc-PA14 neolactotetraose-phenyl-C14H29 - nLcOse4-Cer neolactotetraosylceramide - NP-40 Nonidet P-40 - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - SGGL sulfoglucuronyl glycolipid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号