首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of animal communication systems is an integral part of speciation. In moths, species specificity of the communication channel is largely a result of unique sex pheromone blends produced by females and corresponding specificity of male behavioral response. Insights into the process of speciation may result from studies of pheromone strains within a species in which reproductive isolation is not complete. Toward this end we investigated assortative mating based on female pheromone phenotypes and male response specificity between mutant and normal colonies of the cabbage looper moth, Trichoplusia ni. There was no evidence of assortative mating in small cages in which the density of moths was high. In larger cages with lower densities of moths, assortative mating was evident. In these larger cages, matings between normal males and normal females and mutant males and mutant females were more frequent than interstrain matings. Wind tunnel tests indicated that normal males responded preferentially to pheromone released by normal females, whereas mutant males did not discriminate between normal and mutant pheromone blends. In large field cages, pheromone traps baited with normal females caught equal numbers of mutant and normal males, while pheromone traps baited with mutant females caught primarily mutant males. The overall pattern of assortative mating could be explained primarily based on the normal males' preference for the pheromone blend released by normal females.  相似文献   

2.
Traps baited with the sex pheromone blend of (Z7)‐ and (Z5)‐tetradecenyl acetate captured significant numbers of male spotted cutworm moths, Xestia c‐nigrum (L.) compared to unbaited traps. Nearly no males were captured in traps baited with (Z7)‐tetradecenyl acetate, the major pheromone component. Antennae of spotted cutworm males responded to (Z7)‐, (E7)‐, (Z5)‐ and (E5)‐tetradecenyl acetate in the laboratory; however there was no response by moths in the field to the E isomers when presented in traps as major and minor components respectively of a binary blend or to the (E7) isomer as a single component. These findings clarify the makeup of a sex attractant that can be used for monitoring X. c‐nigrum on agricultural crops in Washington. However, multi‐year season‐long monitoring of spotted cutworm moths in Yakima Valley apple orchards revealed differential responses to pheromone and blacklight traps. A spring flight period showed a strong moth response to the pheromone compared to blacklight, while a later summer flight period showed a weak moth response to the pheromone relative to blacklight. At this time, we do not know which trap type might best indicate spotted cutworm abundance and risk to crops.  相似文献   

3.
The nun moth, Lymantria monacha L., is one of the most important defoliators of Eurasian coniferous forests. Outbreaks during 2011–2015 in the natural/planted larch, and larch‐birch mixed forests of the Greater Khingan Range in Inner Mongolia, China, caused tremendous timber losses from severe defoliation and tree mortality. A series of trapping experiments were conducted in these outbreak areas to evaluate the efficacy of a synthetic species‐specific pheromone lure based on the female pheromone blend of European nun moth populations. Our results clearly show that the nun moth in Inner Mongolia is highly and specifically attracted to this synthetic pheromone, with few gypsy moths (Lymantria dispar) captured. Flight activity monitoring of L. monacha male moths using pheromone‐baited Unitraps at 2 locations during the summer of 2015 indicated that the flight period started in mid‐July, peaking in early August at both locations. Based on male moth captures, there was a strong diurnal rhythm of flight activity throughout the entire scotophase, peaking between 22:00 and 24:00. Unitraps and wing traps had significantly and surprisingly higher catches than the gypsy moth traps. Unitraps fastened to tree trunks 2 m above ground caught significantly more male moths than those at the ground level or at 5 m height. Male L. monacha moths can be attracted to pheromone‐baited traps in open areas 150–200 m distant from the infested forest edge. Our data should allow improvement on the performance of pheromone‐baited traps for monitoring or mass‐trapping to combat outbreaks of this pest in northeastern China.  相似文献   

4.
The allium leafminer, Acrolepiopsis sapporensis Matsumura (Lepidoptera: Acrolepiidae), is a pest of Allium species (Liliaceae) in Asia and Hawaii, USA. We identified candidate sex pheromone components in pheromone gland extracts of female moths and field tested the response of male moths to blends with different components and ratios. Gas chromatographic comparison of abdominal tip extracts from both sexes showed three female‐specific components: (Z)‐11‐hexadecenal (Z11‐16:Ald), (Z)‐11‐hexadecenyl acetate (Z11‐16:OAc), and (Z)‐11‐hexadecen‐1‐ol (Z11‐16:OH). These compounds were identified by mass spectral analysis of natural pheromone components and dimethyldisulfide adducts, and retention index comparisons with synthetic standards. The average ratio of three components, Z11‐16:Ald, Z11‐16:OAc, and Z11‐16:OH, in female extract was 33:100:14. Field trapping experiments indicated that all three components were essential for maximal attraction of male moths. Traps baited with a ternary blend mimicking the blend found in the pheromone gland extracts caught significantly more males than traps baited with caged live females. Increasing doses of the pheromone blend in the lures from 0.01 to 1.0 mg increased catches of male A. sapporensis.  相似文献   

5.
1. Chemical espionage in nature may occur when predators or parasitoids home in on animal or plant communication signals. Parasitoid wasps are known to use pheromones emitted by adults hosts to locate host eggs, larvae or pupae. The response of Trichogramma egg parasitoids to a synthetic sex pheromone blend of moths has been shown in a number of studies over the past 40 years. 2. Trichogramma pretiosum (Hymenoptera, Trichogrammatidae) is a tiny parasitic wasp, attacking the eggs of the noctuid moth Heliothis virescens (Lepidoptera, Noctuidae). This study investigated whether T. pretiosum homes in on the sex pheromone of H. virescens at close range. The arrestment response of the wasps to sex pheromone gland extracts of two types of female moths, so‐called high and low females, was also tested, referring to two selected extreme pheromone types of H. virescens. The study also investigated whether the wasps would mount females, possibly to hitchhike with them. 3. The wasps were arrested by the common, ‘low’ pheromone, but not by the rare, ‘high’ pheromone or by extracts from male hairpencils. The wasps did not show a preference for separate sex pheromone compounds, but when pre‐exposed to the major sex pheromone component of H. virescens before the tests together with H. virescens eggs, they did show a preference, indicating learning behaviour. In the mounting experiments, mated females were mounted significantly more than virgin females or males, suggesting that hitchhiking is a strategy used by these wasps to locate moth eggs. 4. This represents the first study to show a differential response of parasitoid wasps to two different sex pheromone types in a single host species. The results warrant further investigations into the potential role of parasitic wasps in the evolution of sexual communication in moths.  相似文献   

6.
Electroantennogram (EAG) measurements were recorded from the antennae of male and female codling moth, Cydia pomonella L., to determine whether adult moths exposed to surfaces treated with the ecdysteroid agonist methoxyfenozide experience a decline in their antennal reception and thus olfactory sensitivity. Such a phenomenon would offer a possible mechanism for the previously reported decreased responsiveness from moths treated with methoxyfenozide to pheromone‐ and plant volatile‐based monitoring lures. Mean EAG data revealed that the antennae from methoxyfenozide‐treated male moths appear to be just as sensitive to various doses of synthetic codlemone as the antennae from the control and surfactant‐treated moths, but they appeared to be less sensitive to the pheromone component 12OH (collected from female effluvia) than the control male antennae. Mean male EAG responses to the pheromone components E8,E10‐12Al and codlemone collected from methoxyfenozide‐treated females were significantly less than the responses towards those two pheromone components collected from the control and surfactant‐treated females. Female moth exposure to methoxyfenozide did not negatively impact the sensitivity of female antennae to the plant volatile pear ester, but it did towards the apple volatile butyl hexanoate. Data from this study show that adult C. pomonella exposure to methoxyfenozide‐treated surfaces does appear to negatively impact, in a minor way, the (i) olfactory sensitivity (or detection) of male antennae towards some components of the female sex pheromone, (ii) the female antennal sensitivity towards a key apple volatile and (iii) the attractiveness of female pheromone effluvia.  相似文献   

7.
Mating disruption is an environmentally safe plant protection strategy that uses a synthetic copy of an insect pheromone to interfere with sexual communication and hence reproduction. To date, a number of pest moths have been controlled with applications of formulated pheromones as mating disruptants. Recently, however, the first example of resistance to mating disruption was documented in one of the major tea pests in Japan, the smaller tea leafroller moth, Adoxophyes honmai Yasuda (Lepidoptera: Tortricidae). To avoid other such cases, it is important to elucidate the mechanism(s) by which the disruptant lost its effectiveness. To this end, we imposed further selection by rearing field‐collected resistant insects with a synthetic pheromone in the laboratory. After more than 70 generations of selection, a strain with quite strong resistance was established, males of which could find and copulate with their mates even in the presence of 1 mg l?1 of disruptant. Although the mating ability of this strain was greatly increased, the composition and blend ratio of the sex pheromone produced and emitted by females were not obviously changed in comparison with those of females sensitive to mating disruption. However, male response to the pheromone blend was markedly broadened after selection so that resistant males could locate a synthetic pheromone source even when it lacked a pheromone component that is normally necessary for attraction. Males capable of locking onto off‐ratio pheromone blends may be better able to find calling females in pheromone‐treated environments than narrowly tuned males because of greater capability of overcoming sensory imbalance.  相似文献   

8.
Monitoring adult codling moth, Cydia pomonella (L.), is a crucial component in implementing effective integrated management programmes in apple, Malus domestica Borkhausen. Use of sex pheromone lures to track male populations has been the traditional approach, but their use in orchards treated with sex pheromone for mating disruption (MD) has been problematic. Development of kairomone and kairomone–pheromone combination lures has allowed the catch of female moths and has benefited several aspects of codling moth management through improved spray timings and action thresholds. Recently, a new four‐component volatile blend (4‐K) comprised of pear ester, (E,Z)‐2,4‐ethyl decadienoate (PE), (E)‐11 4,8‐dimethyl‐1,3,7‐nonatriene, all isomers of pyranoid linalool oxide and acetic acid (AA) has been characterized that has increased female moth catch threefold versus any previous blend. Field trapping studies were conducted to compare moth catches in traps baited with 4‐K versus the use of sex pheromone, (E,E)‐8,10‐dodecadien‐1‐ol (PH) in combination with PE and AA. Trials were conducted in orchards left either untreated, or treated with PH or PH + PE. Traps baited with 4‐K and 4‐K + PH lures caught significantly more females than traps baited with PH + PE + AA lures. Traps baited with 4‐K + PH lures caught significantly more total moths than traps baited with PH + PE + AA lures in all three orchards. Adding a PH lure to traps with the 4‐K lure did not affect female catch, but significantly increased male and total moth catches. These studies demonstrate that codling moth can be trapped effectively in apple under MD without the use of sex pheromone lures. The significant increase in female codling moth catch with the 4‐K lure suggests that efforts to improve spray timings and action threshold determinations as well as mass trapping might be enhanced with this new lure.  相似文献   

9.
Communicational disruption mechanisms for Oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), were determined using a suite of mathematical tools and graphical operations that enable differentiation between competitive attraction and non‐competitive mechanisms of disruption. Research was conducted in 20 field cages, each covering 12 mature apple trees. Commercial monitoring lures releasing Oriental fruit moth pheromone at a rate of 0.04 μg h?1 and distributed at densities of 0, 1, 2, 4, 8, and 17 per cage were used to evaluate the effect of low‐releasing dispensers on the disruption of sexual communication. Graphical analyses revealed that near‐female‐equivalent pheromone dispensers disrupted Oriental fruit moth competitively. Commercial mating disruption dispensers releasing Oriental fruit moth pheromone at 60 μg h?1 and deployed at 0, 4, 6, 10, 15, 20, and 30 per cage were used to evaluate the effect of high‐releasing dispensers on the disruption of sexual communication. Oriental fruit moth disruption shifted to a non‐competitive mechanism for high‐releasing dispensers. This is the first time such a shift in disruption mechanism has been demonstrated against a background of otherwise identical experimental conditions. Near‐female‐equivalent pheromone dispensers were also used to quantify the additive effect of an attract‐and‐remove control strategy compared with competitive mating disruption. We report a five‐fold reduction in Oriental fruit moth captures under attract‐and‐remove compared to mating disruption using near‐female‐equivalent dispensers. Surprisingly, release of female Oriental fruit moths into these large‐cage disruption studies had no measurable impact on male trapping.  相似文献   

10.
Field studies were conducted to evaluate new kairomone blends in combination with pear ester (E,Z)‐2,4‐ethyl decadienoate (PE) and acetic acid (AA) for their attraction of male and female codling moth, Cydia pomonella (L.), in apple, Malus domestica Borkhausen. The addition of decanal to either AA or PE alone significantly increased total and female moth catches. However, the addition of decanal did not improve the attraction of PE + AA. The addition of either the pyranoid (PyrLOX) or furanoid (FurLOX) linalool oxide but not linalool (LOL) increased moth catches with PE but did not increase catches with PE + AA. Similarly, the addition of PyrLOX plus decanal did not improve PE + AA. The addition of (E)‐4,8‐dimethyl‐1,3,7‐nonatriene (DMNT) to either AA, PE + AA or PE + AA+decanal did not significantly increase moth catches. However, the addition of PyrLOX to traps with PE + AA and DMNT (4‐component lure) significantly increased moth catches compared with PE + AA alone or any of the ternary blends of these volatiles. Females accounted for 60%–80% of the total catch with this 4‐component lure. The 4‐component blend with PyrLOX was a more attractive lure than similar blends that substituted LOL, or a binary blend of LOL and FurLOX for PyrLOX. The 4‐component blend caught nearly fourfold more total and female moths than the purported attractant N‐butyl sulphide when it was used in combination with PE + AA. These results indicate that significant improvements in monitoring, mating disruption and mass trapping of codling moth are possible. Further studies are needed to assess the new attractive blend's effectiveness in combination with sex pheromone lures and to evaluate whether other host plant volatiles can be added or substitute for DMNT or LOX when used in combination with PE + AA.  相似文献   

11.
The electrical activity of single olfactory receptor neurons in male soybean looper (SBL) Pseudoplusia includens(Walker) and cabbage looper (CL) Trihoplusia ni(Hübner) moths was evaluated in response to stimulation with fixed amounts of the individual components of their respective pheromone blends. In common with earlier observations in the CL, there are at least two classes of morphologically distinct pheromone sensitive sensilla on the antenna of male SBL, each of which contains two olfactory receptor neurons. In both species, one class of sensilla contains an olfactory receptor neuron sensitive to (Z)-7-dodecen-1-ol acetate (Z-7, 12:AC), the major component in each insect's blend, and a companion receptor neuron which is sensitive to (Z)-7-dodecen-1-ol (Z7,12: OH). In both species the second class of sensilla contains an olfactory receptor neuron which is sensitive to one of the minor components of the pheromone blend. (Z)-5-dodecen-1-ol acetate (Z-5,12:AC) is an effective stimulus in SBL, whereas (Z)-7-tetradecen-1-ol acetate (Z-7,14:AC) is an effective stimulus in CL. However, these two stimulatory compounds have been identified only in the female CL gland; neither has been found in the SBL gland. Thus, in contrast to the CL, which has receptor neurons which are responsive exclusively to conspecific pheromone components, the SBL has a class of receptor neurons which is responsive to a minor component of another species' pheromone blend. Field-trapping assays in which Z-5,12:AC is added to the SBL blend suggest that this single CL component is a powerful inhibitor of male SBL behavioral responses to conspecific pheromone blends. The difference observed in the specificity of the receptor neurons in this second class of sensilla are thus believed to play an integral role in the isolation processes that are maintained between these two species and may well account for the observed behavioral differences in their responses to heterospecific pheromone blends.  相似文献   

12.
Female moths generally use pheromones to attract males. Normally, all females in a population produce a specific chemical blend with only a limited variance, and the local males are highly attracted to this blend. To better understand the direct and indirect selective forces acting on this communication system, where, unusually, it is the reproductively limited sex that signals for matings, a population genetical model has been constructed and numerically analysed. Basic to the model is the assumption that the pheromone attraction system functions asymmetrically, leading to strong sexual selection between males but no direct sexual selection between females. Evolutionary simulations using the model show that sexual selection in males causes an indirect stabilizing selection on the pheromone blends produced by females. Thus, a more narrow range of pheromone variation is selected for, even in the absence of female sexual selection. The strength of the selection is analysed, and it is suggested that this indirect stabilizing selection becomes particularly important in situations where geographically adjacent populations have evolved different pheromone blends.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 117–123.  相似文献   

13.
Upwind orientation flights of codling moth males Cydia pomonella L. to a single source of sex pheromone (E,E)‐8,10‐dodecadienol (codlemone) are significantly reduced when blending it with pheromone antagonists, either with codlemone acetate, (E,E)‐8,10‐dodecadienyl acetate, or with the codlemone isomer (E,Z)‐8,10‐dodecadienol. However, once activated by a pheromone stimulus, males no longer distinguish between a pheromone source and these antagonistic blend sources. This shows that the pheromone stimulus required for the initiation of an upwind flight response differs from the stimulus for maintaining upwind flight and landing at the source. In contrast to pheromone antagonists, males discriminate between pheromone alone and a blend source of pheromone and the plant volatile pear ester, ethyl (2E,4Z)‐2,4‐decadienoate. This indicates a difference in the detection and neural integration of pheromone and plant volatile stimuli.  相似文献   

14.
Nineteen host plant volatiles (HPVs) were screened for attractivity to adult codling moth Cydia pomonella (L.) as a fourth component of core blends (3K) including (E,Z)-2,4-ethyl decadienoate, (E)-4,8-dimethyl-1,3,7-nonatriene and acetic acid. Each new quaternary combination was compared with a previously reported attractive bisexual lure (4K), consisting of the 3K blend plus 6-ethenyl-2,2,6-trimethyloxan-3-ol (pyranoid linalool oxide, pyrLOX). All lure evaluations were conducted in apple, Malus domestica (Borkhausen). Several compounds were found to significantly lower total and/or female catches when added to the 3K blend, including (Z)-3-hexenol, (E)-2-hexanal and hexyl butanoate (female and total moths), and (Z)-3-hexenyl acetate and linalool (female moths). Other compounds when added to the 3K blend did not increase or decrease moth catches, including methyl salicylate, (E)-β-ocimene, limonene, β-caryophyllene, butyl hexanoate, farnesol, terpineol, terpinen-4-ol and α-pinene. A few added compounds significantly increased moth catches compared with the 3K blend, including β-pinene (male moths), (Z)-jasmone (male and total moths), (E)-β-farnesene and β-myrcene (female and total moths), and (E,E)-α-farnesene (male, female, and total moths). In addition, each of these five compounds when added to the 3K core blend performed similarly to the 4K lure (male, females, and total moths). Further studies should expand these results through tests of these and other new blends with a range of component ratios and total loading amounts. Field trials should also be replicated within all host crops of codling moth and across major geographical production regions.  相似文献   

15.
Abstract 1 Two codling moth Cydia pomonella kairomonal attractants, ethyl (E,Z)‐2,4‐decadienoate (pear ester) and (E)‐β‐farnesene, were tested in an insecticide‐sprayed apple orchard and an orchard treated for mating disruption with synthetic pheromone (E,E)‐8,10‐dodecadienol (codlemone). Male captures with pear ester were higher in the pheromone‐treated than in the insecticide‐treated orchard, whereas captures with (E)‐β‐farnesene were not different. Subsequent wind tunnel experiments confirmed that pre‐exposure to sex pheromone codlemone increased the behavioural response of codling moth males to pear ester. This supports the idea that male attraction to the plant volatile pear ester and sex pheromone codlemone is mediated through the same sensory channels. 2 Pear ester is a bisexual codling moth attractant and even captures of female moths were significantly increased in the pheromone‐treated orchard. In the laboratory wind tunnel, pheromone pre‐exposure had no effect on female response to pear ester, but significantly more mated than unmated codling moth females flew upwind towards a pear ester source. Differences in mating status in insecticide‐treated vs. pheromone‐treated orchards may thus account for the differences in female trap captures with pear ester. 3 These findings are important with respect to monitoring of codling moth with pear ester in mating disruption orchards. They also emphasize the importance of host plant volatiles in pheromone‐mediated mating disruption, which has been neglected to date.  相似文献   

16.
In moth species, females emit a species‐specific sex pheromone that is perceived over long distance by conspecific males. The species‐specificity in the chemical communication channel is achieved by a combination of unique components in specific ratios and sometimes also by interspecific behavioural antagonists to deter sympatrically occurring heterospecific males. In this study, we determined possible antagonistic effects in Helicoverpa gelotopoeon Dyar (Lepidoptera: Noctuidae) males to the major sex pheromone component of sympatrically occurring heliothine moths, Z11‐16:Ald, as well as to the sex pheromone of the sympatrically occurring Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae) (Z11‐16:Ald and Z9‐14:Ald). We also explored whether other co‐occurring species are attracted to these pheromone blends. Our field experiments showed that the addition of Z11‐16:Ald alone or in combination with Z9‐14:Ald inhibited trap catches of H. gelotopoeon males and that this inhibition depended on the concentration of these compounds. In addition, other moth species were attracted to the blends. Together, our results confirm the antagonistic effect of heterospecific sex pheromone compounds of H. virescens to H. gelotopoeon.  相似文献   

17.
The effects of pre‐exposing male codling moths, Cydia pomonella (L.) (Lepidoptera: Tortricidae), to their pheromone (E,E)‐8,10‐dodecadien‐1‐ol (codlemone), in static and moving air, under laboratory and field conditions, on subsequent antennal sensitivity, behavioural responsiveness, and attraction to codlemone were investigated. In flight tunnel experiments, the percentage of moths wing fanning and taking flight were mostly unaffected, but upwind flight to, and contact with, pheromone sources known to elicit responses of both were shown to depend on the intensity and duration of previous exposure to codlemone and recovery time between exposure and assessment. Ten to 30‐min pre‐exposures to codlemone in static air (≈ 35 µg l?1) not only caused a 99% reduction in attraction, but also significantly reduced electroantennogram response to codlemone. Recovery of full antennal sensitivity to codlemone took more than 1 h, but recovery of attraction took over 4 h, suggesting that habituation is also partially involved in reduced behavioural responsiveness following pre‐exposure. Seventy‐five min exposures to codlemone in moving air (5–10 cm s?1) at rates of 0.9, 4.5, and 18 µg h?1 from Celcon fibres caused 75, 86, and 99% disruption, respectively. However, 30–34‐h exposure of caged moths to air moving through an orchard treated with 1000 Isomate‐C® dispensers ha?1 releasing approximately 20 µg h?1 per dispenser during tests, had no impact on moth response in flight‐tunnel assays 30 min after removal from the orchard. In this treated orchard, catches of free‐flying moths in pheromone‐baited traps were completely inhibited. If observed mechanisms such as long‐lasting antennal adaptation or habituation of the central nervous system contribute to the disruption of pheromone communication among codling moths under field conditions, it seems unlikely that they occur following exposure to the average atmospheric concentrations of codlemone. For these effects to be important, codling moths may require close contact with pheromone sources for extended periods, or repeated close encounters.  相似文献   

18.
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae), is a worldwide pest of cruciferous crops. We examined the female pheromone production and male response to various pheromone blends in two Korean populations. Gas chromatography (GC) and GC‐mass spectrometry (MS) analyses of pheromone gland extracts revealed that females produce (Z)‐11‐hexadecenal (Z11‐16:Ald), (Z)‐11‐hexadecenyl acetate (Z11‐16:OAc), and (Z)‐11‐hexadecen‐1‐ol (Z11‐16:OH) in a ratio of 8:100:18. However, (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc), a previously reported component of the sex attractant of a Canadian P. xylostella population was not detected in gland extracts of the Korean one. Field tests showed that Z11‐16:Ald and Z11‐16:OAc are essential for attraction of male moths, and the highest attraction is obtained with a 10:90 blend mimicking the blend found in gland extracts. Addition of 1 or 10% of Z11‐16:OH to the 10:90 blend of Z11‐16:Ald and Z11‐16:OAc significantly increased attraction. However, attraction was strongly antagonized by the addition of as little as 0.1% of Z9‐14:OAc to the most attractive ternary blend. The ternary blend of Z11‐16:Ald, Z11‐16:OAc, and Z11‐16:OH at a ratio of 10:90:1 was more effective at catching P. xylostella males than the Japanese three‐component blend or the Canadian four‐component blend in Korea. These results suggest that there is geographical variation in the pheromone systems of this species.  相似文献   

19.
Cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is one of the most important pest insects in cotton fields in China. Female moths were captured by waterbasin traps with a synthetic female sex pheromone blend in cotton fields over three years. The blend contained (Z)‐11‐hexadecenal and (Z)‐9‐hexadecenal with a ratio of 97:3. Each pheromone dispenser was impregnated with 2.0 mg of pheromone blend and 0.2 mg of antioxidant dissolved with 0.1 mL of hexane, and there was a control dispenser with a similar amount of antioxidant and solvent only. Waterbasin traps were deployed in three configurations in the fields. ‘A’ was pheromone traps only, ‘B’ was both pheromone and control traps, ‘C’ was control traps only. (i) In four plots of ‘A’, the average weekly female catch was 1.5, and more females were captured by centrally located pheromone traps, (ii) In three plots of ‘Brsquo;, control traps also captured female as well as male moths, but average weekly female catches of control traps was significantly lower than that in pheromone‐baited traps. (iii) There were significant linear relationships between the average weekly female catch and the corresponding layer in pheromone‐baited traps in both ‘A’ and ‘B’ plots, and in quadratic equations in control in ‘B’ plots. (iv) With the increase of the interval of traps, average weekly female catches per trap increased but average weekly female catches per hectare decreased. (v) Among the female moths captured by pheromone traps, 88.3% were mated female moths which each containing 1.46 spermatophores, while in control traps 86.9% of the mated female moths had 0.90 spermatophores. There was a significant difference between the average numbers of spermatophores of mated females in pheromone traps and in controls.  相似文献   

20.
The sex pheromone of Phyllonorycter ringoniella (Matsumura) (Lepidoptera: Gracillariidae) has been identified to be a blend of (Z)‐10‐tetradecenyl acetate (Z10‐14:OAc) and E4,Z10‐tetradecadienyl acetate (E4,Z10‐14:OAc) in Japan, Korea, and China. However, the commercial product based on previous results is not attractive enough to be used for monitoring and controlling apple leafminer populations in the field. We re‐investigated the attractiveness of the two pheromone components, singly and in blends, in apple orchards in Shangdong and Shaanxi, the main apple‐growing provinces in China. Our results revealed that Z10‐14:OAc alone was not attractive to Pringoniella male moths in the field, but E4,Z10‐14:OAc alone not only was strongly attractive but caught more males than any of the blends of Z10‐14:OAc and E4,Z10‐14:OAc tested. The most attractive blend ratios differed slightly for the two locations. No clear dose–response relationship was obtained for the 2:8 blend of Z10‐14:OAc and E4,Z10‐14:OAc. However, the dose–response field study of E4,Z10‐14:OAc alone showed that 1 mg per lure achieved the highest moth catch. These findings differ from the previous report of the best pheromone blend in China. Our data showed that E4,Z10‐14:OAc is the major component of the pheromone of Pringoniella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号