首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
The intracellular distribution of enzymes capable of catalyzing the reactions from phosphoglycolate to glycerate in the bluegreen colored eucaryotic alga Cyanidium caldarium has been studied. After separating the organelles from a crude homogenate on a linear flotation gradient, the enzymes glycolate oxidase and glutamate-glyoxylate aminotransferase along with catalase were present in the peroxisomal fraction (density: 1.23 grams per cubic centimeter). Serine hydroxymethyltransferase was found in the mitochondrial fraction (density: 1.18 grams per cubic centimeter). In contrast to the observations in green leaves of higher plants, the enzymes for the conversion of serine to glycerate (serine-glyoxylate aminotransferase and hydroxypyruvate reductase) were found only in the soluble fraction of the gradient. The partial characterization of enzymes from Cyanidium participating in glycolate metabolism revealed only slight differences from the corresponding enzymes from higher plants. The phylogenetic implications of the observed similarities between the enigmatic alga Cyanidium and higher plants are discussed.  相似文献   

2.
The mitochondrial β-oxidation system is one of the central metabolic pathways of energy metabolism in mammals. Enzyme defects in this pathway cause fatty acid oxidation disorders. To elucidate the role of 2,4-dienoyl-CoA reductase (DECR) as an auxiliary enzyme in the mitochondrial β-oxidation of unsaturated fatty acids, we created a DECR–deficient mouse line. In Decr−/− mice, the mitochondrial β-oxidation of unsaturated fatty acids with double bonds is expected to halt at the level of trans-2, cis/trans-4-dienoyl-CoA intermediates. In line with this expectation, fasted Decr−/− mice displayed increased serum acylcarnitines, especially decadienoylcarnitine, a product of the incomplete oxidation of linoleic acid (C18:2), urinary excretion of unsaturated dicarboxylic acids, and hepatic steatosis, wherein unsaturated fatty acids accumulate in liver triacylglycerols. Metabolically challenged Decr−/− mice turned on ketogenesis, but unexpectedly developed hypoglycemia. Induced expression of peroxisomal β-oxidation and microsomal ω-oxidation enzymes reflect the increased lipid load, whereas reduced mRNA levels of PGC-1α and CREB, as well as enzymes in the gluconeogenetic pathway, can contribute to stress-induced hypoglycemia. Furthermore, the thermogenic response was perturbed, as demonstrated by intolerance to acute cold exposure. This study highlights the necessity of DECR and the breakdown of unsaturated fatty acids in the transition of intermediary metabolism from the fed to the fasted state.  相似文献   

3.
The Xanthophycean alga Bumilleriopsis filiformis possesses peroxisomes which on electron micrographs show a mostly spherical or ovoid shape with a diameter in the range of 0.3 micrometer. Their granular matrix is usually of moderate electron density and in a very few cases contains amorphous inclusions. No associations with other organelles could be observed.

During separation in a sucrose gradient, the peroxisomes from Bumilleriopsis equilibrate at a density of 1.22 grams per cubic centimeter. Glycolate oxidase and glyoxylate-glutamate aminotransferase were found in the isolated organelles along with catalase and uricase. However, no further leaf peroxisomal enzymes were detected. This is the first time that an alga of the group of Xanthophyceae has been demonstrated to possess a glycolate oxidase.

The organelles from Bumilleriopsis differ from leaf peroxisomes also by the absence of enzymes of the β-oxidation pathway. All enzymes for the degradation of fatty acids which were tested are located solely in the mitochondria.

  相似文献   

4.
In the maturing castor bean seed (Ricinus communis), maximum β-oxidation appears at 28 days after flowering and in the germinating seed, 4 days after germination. Highest specific activities for both β-oxidation systems and their component enzymes are associated with cytosomal particles banding at a density of 1.25 g/ml in a sucrose gradient. Substrate specificity studies indicate that of several fatty acids, ricinoleate is oxidized most rapidly by the preparation from the maturing seed (28 days after flowering) while palmitate and linoleate are oxidized most rapidly by extracts obtained from tissue germinated for 4 days. The β-oxidation activities observed in both systems reflect the expression of activity of at least 3 of the component enzymes, crotonase, β-hydroxyacyl dehydrogenase and β-keto-thiolase, which rise and fall co-ordinately. Acyl thiokinase does not appear to play a limiting role in regulating β-oxidation per se under the conditions employed here.  相似文献   

5.
The effects of heat shock on the synthesis of α-amylase and on the membranes of the endoplasmic reticulum (ER) of barley (Hordeum vulgare) aleurone were studied. Heat shock, imposed by raising the temperature of incubation from 25°C to 40°C for 3 hours, inhibits the accumulation of α-amylase and other proteins in the incubation medium of barley aleurone layers treated with gibberellic acid and Ca2+. When ER is isolated from heat-shocked aleurone layers, less newly synthesized α-amylase is found associated with this membrane system. ER membranes, as indicated by the activities of NADH cytochrome c reductase and ATP-dependent Ca2+ transport, are not destroyed by heat stress, however. Although heat shock did not reduce the activity of ER membrane marker enzymes, it altered the buoyant density of these membranes. Whereas ER from control tissue showed a peak of marker enzyme activity at 27% to 28% sucrose (1.113-1.120 grams per cubic centimeter), ER from heat-shocked tissue peaked at 30% to 32% sucrose (1.127-1.137 grams per cubic centimeter). The synthesis of a group of proteins designated as heat-shock proteins (HSPs) was stimulated by heat shock. These HSPs were localized to different compartments of the aleurone cell. Several proteins ranging from 15 to 30 kilodaltons were found in the ER and the mitochondrial/plasma membrane fractions of heat-shocked cells, but none of the HSPs accumulated in the incubation medium of heat-shocked aleurone layers.  相似文献   

6.
It is generally admitted that the ascomycete yeasts of the subphylum Saccharomycotina possess a single fatty acid ß-oxidation pathway located exclusively in peroxisomes, and that they lost mitochondrial ß-oxidation early during evolution. In this work, we showed that mutants of the opportunistic pathogenic yeast Candida lusitaniae which lack the multifunctional enzyme Fox2p, a key enzyme of the ß-oxidation pathway, were still able to grow on fatty acids as the sole carbon source, suggesting that C. lusitaniae harbored an alternative pathway for fatty acid catabolism. By assaying 14Cα-palmitoyl-CoA consumption, we demonstrated that fatty acid catabolism takes place in both peroxisomal and mitochondrial subcellular fractions. We then observed that a fox2Δ null mutant was unable to catabolize fatty acids in the mitochondrial fraction, thus indicating that the mitochondrial pathway was Fox2p-dependent. This finding was confirmed by the immunodetection of Fox2p in protein extracts obtained from purified peroxisomal and mitochondrial fractions. Finally, immunoelectron microscopy provided evidence that Fox2p was localized in both peroxisomes and mitochondria. This work constitutes the first demonstration of the existence of a Fox2p-dependent mitochondrial β-oxidation pathway in an ascomycetous yeast, C. lusitaniae. It also points to the existence of an alternative fatty acid catabolism pathway, probably located in peroxisomes, and functioning in a Fox2p-independent manner.  相似文献   

7.
Microbial anaerobic and so-called hybrid pathways for degradation of aromatic compounds contain β-oxidation-like steps. These reactions convert the product of the opening of the aromatic ring to common metabolites. The hybrid phenylacetate degradation pathway is encoded in Escherichia coli by the paa operon containing genes for 10 enzymes. Previously, we have analyzed protein-protein interactions among the enzymes catalyzing the initial oxidation steps in the paa pathway (Grishin, A. M., Ajamian, E., Tao, L., Zhang, L., Menard, R., and Cygler, M. (2011) J. Biol. Chem. 286, 10735–10743). Here we report characterization of interactions between the remaining enzymes of this pathway and show another stable complex, PaaFG, an enoyl-CoA hydratase and enoyl-Coa isomerase, both belonging to the crotonase superfamily. These steps are biochemically similar to the well studied fatty acid β-oxidation, which can be catalyzed by individual monofunctional enzymes, multifunctional enzymes comprising several domains, or enzymatic complexes such as the bacterial fatty acid β-oxidation complex. We have determined the structure of the PaaFG complex and determined that although individually PaaF and PaaG are similar to enzymes from the fatty acid β-oxidation pathway, the structure of the complex is dissimilar from bacterial fatty acid β-oxidation complexes. The PaaFG complex has a four-layered structure composed of homotrimeric discs of PaaF and PaaG. The active sites of PaaF and PaaG are adapted to accept the intermediary components of the Paa pathway, different from those of the fatty acid β-oxidation. The association of PaaF and PaaG into a stable complex might serve to speed up the steps of the pathway following the conversion of phenylacetyl-CoA to a toxic and unstable epoxide-CoA by PaaABCE monooxygenase.  相似文献   

8.
Isolation and enzymic characterization of euglena proplastids   总被引:2,自引:2,他引:0       下载免费PDF全文
Organelles were isolated from dark-grown Euglena gracilis Klebs by sucrose density gradient centrifugation. Plastids, identified by triosephosphate isomerase and NADP glyoxylate reductase were present at an equilibrium density of 1.24 grams per cubic centimeter clearly separated from mitochondria at an equilibrium density of 1.22 grams per cubic centimeter. Assay for choline phosphotransferase and glucose-6-phosphatase showed that endoplasmic reticulum membranes were present at a density of 1.12 grams per cubic centimeter. The plastid fraction contained phosphofructokinase, pyruvate kinase, triosephosphate isomerase and aldolase indicating the operation of a glycolytic pathway. During regreening pyruvate kinase and phosphofructokinase in the developing proplastid decreased, neither enzyme being present in the mature chloroplast. However, plastids were present in the photosynthetic cell as shown by a peak of glycolysis enzymes at an equilibrium density of 1.24 grams per cubic centimeter.  相似文献   

9.
Uricase and allantoinase in glyoxysomes   总被引:1,自引:2,他引:1  
In fat-degrading tissues of seedlings of seven different plant species examined, uricase activity (urate:O2 oxidoreductase, EC 1.7.33) was associated with particulate fractions. After equilibrium density centrifugation on sucrose density gradients the enzyme activity was recovered in the glyoxysomal band (density: 1.25 grams per cubic centimeter). Allantoinase is also present in glyoxysomes but, equally, in the proplastid region (density: 1.22 grams per cubic centimeter). Xanthine oxidase, xanthine dehydrogenase, allantoicase, and urease were not detected in glyoxysomes from castor bean endosperm. Uricase in these particles shows its maximal activity at pH 8.9. The apparent Km is 7.4 μm. Urate concentrations greater than 120 μm as well as certain other purine compounds inhibit the enzyme. Cyanide at a concentration of 10 μm is a potent inhibitor. 2,6-Dichlorophenolindophenol did not substitute for oxygen as electron acceptor.  相似文献   

10.
Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in β-oxidation convert these substrates to long-chain α,ω-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is ω-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C18:1), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to ω-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C14:0) much more effectively. Both enzymes, in particular CYP52A17, also oxidized ω-hydroxy fatty acids, ultimately generating the α,ω-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for β-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.  相似文献   

11.
There are two types of mitochondria present in imbibed peanut cotyledons: a light type (density 1.182 grams per cubic centimeter) and a heavy type (density 1.205 grams per cubic centimeter). The membrane fractions from these two types can be distinguished using sucrose density gradient analysis, and differences in membrane density between the light and heavy types are reflected in differences in their protein N and phospholipid P composition. With increasing time after imbibition, there is a substantial increase in the amount and activity of the light type of mitochondria due to their de novo synthesis. The membrane density of the light mitochondrial fraction declines over 5 days after the start of imbibition as the phospholipid P to protein N ratio increases. The heavy mitochondrial fraction declines during the first 3 days after the start of imbibition, and then it remains at a low, but constant, level thereafter. Even during the decline, however, there is synthesis of proteins comparable to that into light mitochondria. The mitochondrial biogenesis that has been observed in peanut cotyledons is of the light type, the function and physiological importance of the minor heavy type is not known.  相似文献   

12.
Bode K  Hooks MA  Couee I 《Plant physiology》1999,119(4):1305-1314
The existence in higher plants of an additional β-oxidation system in mitochondria, besides the well-characterized peroxisomal system, is often considered controversial. Unequivocal demonstration of β-oxidation activity in mitochondria should rely on identification of the enzymes specific to mitochondrial β-oxidation. Acyl-coenzyme A dehydrogenase (ACAD) (EC 1.3.99.2,3) activity was detected in purified mitochondria from maize (Zea mays L.) root tips and from embryonic axes of early-germinating sunflower (Helianthus annuus L.) seeds, using as the enzyme assay the reduction of 2,6-dichlorophenolindophenol, with phenazine methosulfate as the intermediate electron carrier. Subcellular fractionation showed that this ACAD activity was associated with mitochondrial fractions. Comparison of ACAD activity in mitochondria and acyl-coenzyme A oxidase activity in peroxisomes showed differences of substrate specificities. Embryonic axes of sunflower seeds were used as starting material for the purification of ACADs. Two distinct ACADs, with medium-chain and long-chain substrate specificities, respectively, were separated by their chromatographic behavior, which was similar to that of mammalian ACADs. The characterization of these ACADs is discussed in relation to the identification of expressed sequenced tags corresponding to ACADs in cDNA sequence analysis projects and with the potential roles of mitochondrial β-oxidation in higher plants.  相似文献   

13.
Plasma membrane vesicles from roots of barley (Hordeum vulgare L., var. Arivat) had an equilibrium density in sucrose of about 1.16 grams per cubic centimeter, but could not be purified satisfactorily with the procedure developed for roots of other plant species. The reported procedure involving differential centrifugation to remove mitochondria (peak density of 1.18 grams per cubic centimeter) and subsequent density gradient centrifugation to purify plasma membrane vesicles was modified to include a narrower differential centrifugation fraction (13,000 to 40,000g instead of 13,000 to 80,000g) and a narrower density range in the sucrose gradient (1.15 to 1.18 grams per cubic centimeter instead of 1.15 to 1.20 grams per cubic centimeter). The fraction obtained by the modified procedure was between 60 and 70% pure as determined by staining with the phosphotungstic acid-chromic acid procedure, which was judged to be reliable for identifying plasma membrane vesicles in subcellular fractions from barley roots. The plasma membrane fraction was enriched in K+-stimulated ATPase activity at pH 6.5. The presence of nonspecific ATP-hydrolyzing activity in the plasma membrane fraction made it difficult to determine if the ATPase had properties in common with those reported for cation absorption in barley roots.  相似文献   

14.
Fatty acid β-oxidation is essential for seedling establishment of oilseed plants, but little is known about its role in leaf metabolism of adult plants. Arabidopsis thaliana plants with loss-of-function mutations in the peroxisomal ABC-transporter1 (PXA1) or the core β-oxidation enzyme keto-acyl-thiolase 2 (KAT2) have impaired peroxisomal β-oxidation. pxa1 and kat2 plants developed severe leaf necrosis, bleached rapidly when returned to light, and died after extended dark treatment, whereas the wild type was unaffected. Dark-treated pxa1 plants showed a decrease in photosystem II efficiency early on and accumulation of free fatty acids, mostly α-linolenic acid [18:3(n-3)] and pheophorbide a, a phototoxic chlorophyll catabolite causing the rapid bleaching. Isolated wild-type and pxa1 chloroplasts challenged with comparable α-linolenic acid concentrations both showed an 80% reduction in photosynthetic electron transport, whereas intact pxa1 plants were more susceptible to the toxic effects of α-linolenic acid than the wild type. Furthermore, starch-free mutants with impaired PXA1 function showed the phenotype more quickly, indicating a link between energy metabolism and β-oxidation. We conclude that the accumulation of free polyunsaturated fatty acids causes membrane damage in pxa1 and kat2 plants and propose a model in which fatty acid respiration via peroxisomal β-oxidation plays a major role in dark-treated plants after depletion of starch reserves.  相似文献   

15.
A (1→3)-β-glucan synthase has been isolated from petiole tissue of sugar beet (Beta vulgaris L.). Enzyme activity is associated with a membrane fraction with a density of 1.03 grams per cubic centimeter when subjected to isopycnic density gradient centrifugation in Percoll. The reaction product was determined to be a linear (1→3)-β-glucan by methylation analysis and by glucanase digestion. (1→3)-β-Glucan synthase activity is markedly stimulated by Ca2+; activation is half-maximal at about 50 micromolar Ca2+ and is nearly saturated at 100 micromolar. Other divalent cations tested, Mg2+, Mn2+, and Sr2+, also stimulate enzyme activity but are less effective. Enzyme activity was also stimulated up to 12-fold by β-glucosides. Sirofluor, the fluorochrome from aniline blue, inhibited enzyme activity 95% when included at 1 millimolar. The enzyme was solubilized in Zwittergent 3-14; 85% of total enzyme activity was solubilized in 0.03% detergent and the optimal detergent-to-protein ratio was 0.3 at 3 milligrams per milliliter protein.  相似文献   

16.
The characterization of scully, an essential gene of Drosophila with phenocritical phases at embryonic and pupal stages, shows its extensive homology with vertebrate type II l-3-hydroxyacyl-CoA dehydrogenase/ERAB. Genomic rescue demonstrates that four different lethal mutations are scu alleles, the molecular nature of which has been established. One of them, scu3127, generates a nonfunctional truncated product. scu4058 also produces a truncated protein, but it contains most of the known functional domains of the enzyme. The other two mutations, scu174 and scuS152, correspond to single amino acid changes. The expression of scully mRNA is general to many tissues including the CNS; however, it is highest in both embryonic gonadal primordia and mature ovaries and testes. Consistent with this pattern, the phenotypic analysis suggests a role for scully in germ line formation: mutant testis are reduced in size and devoid of maturing sperm, and mutant ovarioles are not able to produce viable eggs. Ultrastructural analysis of mutant spermatocytes reveals the presence of cytoplasmic lipid inclusions and scarce mitochondria. In addition, mutant photoreceptors contain morphologically aberrant mitochondria and large multilayered accumulations of membranous material. Some of these phenotypes are very similar to those present in human pathologies caused by β-oxidation disorders.Although energy storage and metabolism have been well-studied in Drosophila (Clark, 1989), the enzymes implicated in fatty acid oxidation have not been characterized, and the phenotypes associated with genetic alterations in this metabolic pathway have not been described. β-oxidation is a major metabolic process by which fatty acids are oxidized to provide a significant source of energy, while also generating acetyl-CoA, a metabolite that is located at the crossroads of many metabolic routes. In mammals, hepatic β-oxidation provides circulating ketone bodies. These ketone bodies are a very important fuel for other organs—especially the brain—when blood glucose levels are low, for example, during long-lasting exercise or starvation. By contrast, in muscles, β-oxidation is almost exclusively used to obtain energy from complete oxidation of acetyl-CoA. In animal cells, both mitochondria and peroxisomes are the subcellular organelles where β-oxidation takes place (reviewed by Mannaerts and Van Veldhoven, 1996; Eaton et al., 1996), but the mitochondrion is the main site of energy production. As a secondary product of mitochondrial aerobic respiration, reactive oxygen species are generated (Boveris et al., 1973). Also, mitochondria are important storage sites for intracellular calcium, and are necessary for intracellular calcium buffering (Gunter et al., 1994). Currently, mitochondria are considered a triggering factor in the onset of many neurodegenerative diseases (Beal et al., 1993; Sims, 1996).During one passage through the β-oxidation pathway, saturated fatty acids with an even number of carbon atoms release a pair of carbon residues. This release is achieved by four consecutive reactions successively catalyzed by acyl-CoA dehydrogenase, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase (HADH),1 and 3-ketoacyl-CoA thiolase. Over the last years, it has become clear that β-oxidation pathway enzymes consist of specificity groups of isoenzymes that catalyze the same reaction, but differ in their affinity for carbon chain length of the various substrates. Complexity of this metabolic pathway is further increased by tissue-specific isoenzymes. In mitochondria, the third step of the pathway was known to be catalyzed by two HADHs with overlapping substrate chain-length specificities. Long-chain HADH is a trifunctional protein that catalyzes the last three steps of β oxidation. It is tightly associated with the inner mitochondrial membrane, and is active with medium and long chain–length substrates (El-Fakhri and Middleton, 1982). In contrast, short-chain HADH is a monofunctional soluble enzyme located in the mitochondrial matrix that preferentially metabolizes short chain–length substrates (He et al., 1989). However, a new type of HADH has been recently characterized (Kobayashi et al., 1996) and cloned (Furuta et al., 1997) from bovine liver. Termed type II short chain HADH, it differs from the classical isozyme (type I) in its primary structure, and also in its molecular and catalytic properties. It is clear now that the β-oxidation pathway conceals a more elaborate specificity than previously thought.Primary defects in mitochondrial function are implicated in a growing number of human diseases (Luft, 1994; Roe and Coates, 1995). Manifestation of these diseases are thought to result from oxidative stress derived from energy imbalance. Oxidative stress, perhaps partly glutamate-mediated, has also been implicated in some age- related neurodegenerative diseases such as Parkinson, Alzheimer, and Huntington diseases, and amyotrophic lateral sclerosis (Beal et al., 1993; Coyle and Puttfarcken, 1993). In several inherited enzymopathies of the mitochondrial fatty acid β-oxidation pathway (reviewed in Roe and Coates, 1995), the affected enzymatic activity remains unknown, partly as consequence of the emerging complexity of the enzymatic repertoire. Studies of patients with these genetic disorders suggest that mitochondrial β-oxidation may be essential only during periods of high energy demand such as fasting, febrile illness, or muscular exertion. In addition, the levels of some of the β-oxidation mitochondrial enzymes have been shown to increase only after birth (Lopaschuk et al., 1992; Hainline et al., 1993). During prenatal development, β-oxidation seems to represent a minor energy source, and thus the role of the β-oxidation enzymes in this period is not well understood.In this study, we report the molecular characterization of a Drosophila gene, scully (scu), that encodes a protein with high structural homology to type II HADH. This is the first enzyme related to β-oxidation that has been reported in Drosophila. Recently, the human homologue ERAB has been shown to bind the amyloid-β peptide, and has consequently been related with Alzheimer''s disease neuronal dysfunction (Yan et al., 1997). We also report the phenotypes associated with different lethal alleles of this gene. The mitochondrial phenotypes presented here suggest an identical localization for this new protein with that of its vertebrate counterparts. Striking similarities between the cellular phenotypes of scu mutants and the human pathologies associated with alterations in this metabolic pathway are discussed.  相似文献   

17.
Boss WF  Ruesink AW 《Plant physiology》1979,64(6):1005-1011
The plasma membranes of protoplasts released from carrot suspension culture cells were labeled with [14C]acetyl-concanavalin A. After homogenization a single labeled membrane fraction was isolated in a continuous isopycnic Renografin gradient. The labeled membranes peaked at an apparent density of 1.14 grams per cubic centimeter between the Golgi fraction at a density of 1.11 grams per cubic centimeter as determined by latent IDPase activity and the mitochondria at a density of 1.16 grams per cubic centimeter as determined by the cytochrome c oxidase activity. This method provided a very discrete peak of putative plasma membrane. On discontinuous Renografin gradients a relatively pure fraction of labeled plasma membranes could be readily isolated at the 1.122 to 1.146 grams per cubic centimeter interface. The labeled fraction was enriched in both an ATPase (pH 6.5) and a glucan synthetase with a pH optimum of 6.5 whose activity was promoted by magnesium and cellobiose. Enzyme activities were not altered by the membrane label.  相似文献   

18.
Preliminary results from differential centrifugation experiments, washing treatments, and enrichment in linear sucrose gradients at a density of 1.09 grams per cubic centimeter all indicated that β-glucosidase activity in corn root homogenates was associated with a membrane such as tonoplast. A subsequent sucrose density gradient centrifugation time course showed that the β-glucosidase was actually a soluble enzyme which moved into the gradients. The problem of soluble enzymes contaminating light density membranes in sucrose gradients and the question of centrifugation time necessary for membrane vesicles to reach isopycnic conditions are addressed.  相似文献   

19.
Membrane fractions from mature silver beet (Beta vulgaris) deveined leaf and leaf stem homogenates have associated Ca2+ -dependent protein kinase. The Ca2+ -dependent protein kinase activity is associated with plasma membranes (density 1.14-1.18 grams per cubic centimeter) as determined from copurification on isopycnic centrifugation with plasma membrane markers such as β-glucan synthetase, eosin-5-maleimidelabeling, and specific naphthylphthalamic acid-binding. The Ca2+ -dependent protein kinase is not specifically associated with chloroplasts or mitochondria. The membrane-bound Ca2+ -dependent protein kinases were solubilized with 0.8% (volume/volume) Nonidet P40. The solubilized enzymes were extensively purified by a protocol involving binding to diethylaminoethyl-cellulose (Whatman DE-52), Ca2+ -dependent binding to phenyl-Sepharose CL-4B, gradient elution from diethylaminoethyl-Sephacel (resolving two distinct Ca2+ -dependent protein kinases), and gel filtration on Ultrogel AcA 44. These two membrane-derived enzymes have similar molecular weights but differ in protein substrate specificity, in Km values for ATP, and in Ca2+ -independent activation by unsaturated fatty acids. The membrane-bound enzymes correspond closely in these properties to two Ca2+ -dependent protein kinases present in the soluble phase.  相似文献   

20.
X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号