首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The green alga Pyrobotrys stellata Korshik., an obligate phototroph, is unable to utilise carbon dioxide for growth, although assimilation of acetate is dependent on the photosynthetic process. The incorporation of 14CO2 from 14C-bicarbonate into the cells of P. stellata is only 3% of that in Chlorella pyrenoidosa Chick. The activity of the key enzyme of the Calvin cycle, ribulose-1-5-diphosphate carboxylase, is very low in P. stellata, being only 7% of that in C. pyrenoidosa. The determination of the products of 14CO2 fixation in intact cells confirms that ribulose-1-5-diphosphate activity is very low in P. stellata, since little carbon-14 is found in 1–3 diphosphoglyceric acid, the product of carboxylation of ribulose-1-5-diphosphate. It is concluded that the inability of P. stellata to utilize carbon dioxide for growth in the light is probably the result of the low ribulose-1-5-diphosphate carboxylase activity in the organism.  相似文献   

2.
大气氮沉降增加生态系统氮有效性,优势种植物对不同水平氮输入的响应影响草原生态系统结构和功能。研究设置4个氮添加水平,分析内蒙古温带草原优势种大针茅(Stipa grandis)光合生理特性对不同梯度氮添加的响应。结果表明:低氮(0-2 g m-2 a-1)处理时,大针茅叶片氮含量较低,叶绿素含量和1,5-二磷酸核酮糖羧化/加氧酶的活性不高,光能利用效率低,导致光系统II出现过剩激发能,光合器官受到抑制,净光合速率相对较低。适量氮添加(5-10 g m-2 a-1)提高了大针茅叶片羧化系统和电子传递系统的氮分配,进而提高了1,5-二磷酸核酮糖羧化/加氧酶的活性以及电子传递速率,净光合速率增大。高氮(25 g m-2 a-1)处理时,叶片氮含量较高,但光合氮分配比例下降,降低了光合氮利用效率。大针茅光抑制程度增大,叶绿素含量、1,5-二磷酸核酮糖羧化/加氧酶的活性下降,不利于生物量积累。研究结果有助于进一步了解全球变化背景下草原生态系统优势种的生理响应机制,并为草原的可持续发展提供一定的理论依据。  相似文献   

3.
6-Phosphogluconate is a much more effective inhibitor of the photosynthetic carboxylation enzyme, ribulose-1, 5-diphosphate carboxylase, than other sugar phosphates and sugar acids of the reductive and oxidative pentose phosphate cycles. The inhibition appears to be noncompetitive with ribulose 1,5-diphosphate. Since 6-phosphogluconate is unique to the oxidative cycle and inhibits at concentrations comparable to those found in vivo, it is proposed that its inhibition of the carboxylase may be a regulatory factor. If so, it would operate during darkness as a different control factor from those factors postulated to activate the carboxylase during photosynthesis.  相似文献   

4.
Summary Short-term manometric experiments with bacteria-free cultures of Anabaena cylindrica showed that the close dependency of nitrogen fixation upon photosynthesis could be temporarily eliminated in nitrogen-starved cells. Initial rates of nitrogen uptake by these cells in the absence of carbon dioxide were equally rapid in the light and dark, decreasing and finally ceasing after two hours. Continued steady nitrogen uptake was only maintained for long periods in the presence of carbon dioxide in the light. In the dark, nitrogen uptake was accompanied by carbon dioxide evolution.More oxygen was evolved in the light by cells fixing nitrogen than by those incubated under argon. This additional oxygen evolution could be accounted for by extra carbon dioxide fixation in the presence of nitrogen.Of a number of organic compounds tested, only sodium pyruvate stimulated nitrogen fixation. This stimulation was achieved both in the light and dark and in the presence and absence of carbon dioxide, showing that the role of pyruvate was other than acting as a carbon skeleton.Three metabolic inhibitors, cyanide and chlorpromazine (chiefly respiratory) and phenylurethane (photosynthetic) differentially inhibited photosynthesis and nitrogen fixation. The latter inhibitor had a more marked effect on photosynthesis while the two chiefly respiratory inhibitors had a stronger effect on nitrogen fixation.  相似文献   

5.
The changes in the rate of photosynthetic and dark CO2 assimilation and the activity of key enzymes of carboxylation were studied during the main developmental stages (shoots, juvenile plants, and mature plants) of red macroalga Gracilaria verrucosa (Huds.) Papenf. Changes in the direction of primary carbon metabolism were also investigated. It was estimated that the transition of metabolism related to the shift in the pathways of carboxylation did not occur during development of G. verrucosa. During all developmental stages, the level of dark CO2 assimilation was by at least one order of magnitude lower than that of photosynthetic assimilation The predominant pathway of CO2 assimilation was ribulosobisphosphate carboxylation. At the same time, the transition of metabolism related to the changes in the type of phosphoglyceric acid utilization was found. At the early developmental stages, a substantial part of phosphoglyceric acid was directed into the amino acid metabolism via the anaplerotic pathway of photosynthesis similar to that in higher plants.  相似文献   

6.
At 14-hour day length, 25 C leaf temperature, 9 mm Hg vapor-pressure deficit, and 1.17 joules cm−2 min−1 irradiance, the diurnal change in daily photosynthesis of the cultivated peanut (Arachis hypogaea L.) is a result of an endogenously controlled circadian rhythm in net photosynthesis which peaks near noon and troughs near midnight. By resetting the day-night light regime, the rhythm rephased in continuous light. The free-running rhythm approximates 26 hours. Both transpiration and dark respiration show similar rhythmicity, with transpiration closely in phase with the rhythm in photosynthesis. The rhythm in carbon dioxide compensation point is approximately 12 hours out of phase, peaking at midnight and troughing at midday. Endogenous changes in stomatal aperture seemed to be the major control of the rhythm in photosynthesis. The activity of ribulose-1,5-diphosphate carboxylase increased during the normal photoperiod, leveling off after 12 hours; however, the activity was not correlated with the rhythmic change in photosynthesis.  相似文献   

7.
Abstract A simple mechanical method for the rapid isolation of chloroplasts with high rates of photosynthesis from young leaves of oat (Avena sativa L.) was described. The photosynthetic activity of these chloroplasts was stable for at least 2 h with rates of CO2-dependent O2 evolution of 30–40 μmol g 1 Chl s 1. The photosynthetic properties of these chloroplasts were similar to those reported for spinach and pea chloroplasts isolated by mechanical disruption. The pH optimum for photosynthetic O2 evolution was pH 7.6. The induction time was 0.5–2 min. Maximal rates of photosynthetic O2 evolution in these chloroplast preparations were obtained in the absence of both divalent cations and EDTA. Addition of divilent cations strongly inhibited photosynthesis which could be partially restored by the subsequent addition of EDTA. But when these cations were not present in the assay medium the addition of EDTA greater than 1 mol m 3 decreased photosynthetic activity. The optimal orthophosphate concentration required for photosynthesis in these chloroplast preparations was 0.2–0.3 mol m 3. In contrast, the addition of pyrophosphate either in the light or dark inhibited photosynthesis. In a comparative study, chloroplasts were also isolated from oat and wheat (Triticum aestivum L., cultivar Hybrid C306) protoplasts. These chloroplast preparations were found to have properties similar to those determined for oat chloroplasts isolated by the mechanical method reported above.  相似文献   

8.
When nitrogen fixing cell cultures of Synechococcus RF-1 were subjected to an alternating lightdark regime (12 h:12 h), a cyclic decrease in the photosynthetic oxygen evolution potential was observed during the dark periods. This rhythm of net photosynthesis rate was maintained for at least two days after transition to continuous light. The decrease in net photosynthesis was accompanied by a stimulation of dark respiration. However, the magnitude of oxygen uptake was considerably smaller than the observed decrease in oxygen evolution. The photosynthetic activity of cells taken from the dark period was characterized by (i) a significantly lower quantum yield and (ii) a strong reduction in the light-saturated rate of photosynthesis. Growing the cultures on nitrate or under continuous light completely suppressed this rhythm. Protein synthesis was not necessary for the recovery of the light-saturated rate of photosynthesis during the light period. The cellular content of chlorophyll a and of phycobiliproteins did not vary between light and dark period, indicating that quantitative changes in the composition of the photosynthetic apparatus are not the basis for the observed oscillations. Regulatory modifications of the photosynthetic efficiency are proposed as an adaptation mechanism to adjust the intracellular oxygen concentration to the needs for nitrogenase activity.Abbreviation Chl chlorophyll  相似文献   

9.
Efficient light to biomass conversion in photobioreactors is crucial for economically feasible microalgae production processes. It has been suggested that photosynthesis is enhanced in short light path photobioreactors by mixing‐induced flashing light regimes. In this study, photosynthetic efficiency and growth of the green microalga Chlamydomonas reinhardtii were measured using LED light to simulate light/dark cycles ranging from 5 to 100 Hz at a light‐dark ratio of 0.1 and a flash intensity of 1000 µmol m−2 s−1. Light flashing at 100 Hz yielded the same photosynthetic efficiency and specific growth rate as cultivation under continuous illumination with the same time‐averaged light intensity (i.e., 100 µmol m−2 s−1). The efficiency and growth rate decreased with decreasing flash frequency. Even at 5 Hz flashing, the rate of linear electron transport during the flash was still 2.5 times higher than during maximal growth under continuous light, suggesting storage of reducing equivalents during the flash which are available during the dark period. In this way the dark reaction of photosynthesis can continue during the dark time of a light/dark cycle. Understanding photosynthetic growth in dynamic light regimes is crucial for model development to predict microalgal photobioreactor productivities. Biotechnol. Bioeng. 2011;108: 2905–2913. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Crop leaves are subject to continually changing light levels in the field. Photosynthetic efficiency of a crop canopy and productivity will depend significantly on how quickly a leaf can acclimate to a change. One measure of speed of response is the rate of photosynthesis increase toward its steady state on transition from low to high light. This rate was measured for seven genotypes of soybean [Glycine max (L.) Merr.]. After 10 min of illumination, cultivar ‘UA4805’ (UA) had achieved a leaf photosynthetic rate (Pn) of 23.2 μmol · m?2 · s?1, close to its steady‐state rate, while the slowest cultivar ‘Tachinagaha’ (Tc) had only reached 13.0 μmol · m?2 · s?1 and was still many minutes from obtaining steady state. This difference was further investigated by examining induction at a range of carbon dioxide concentrations. Applying a biochemical model of limitations to photosynthesis to the responses of Pn to intercellular CO2 concentration (Ci), it was found that the speed of apparent in vivo activation of ribulose‐1:5‐bisphosphate carboxylase/oxygenase (Rubisco) was responsible for this difference. Sequence analysis of the Rubisco activase gene revealed single nucleotide polymorphisms that could relate to this difference. The results show a potential route for selection of cultivars with increased photosynthetic efficiency in fluctuating light.  相似文献   

11.
Responses of net photosynthetic rates to temperature, irradiance, pH/inorganic carbon and diurnal rhythm were analyzed in 15 populations of eight freshwater red algal species in culture and natural conditions. Photosynthetic rates were determined by oxygen concentration using the light and dark bottles technique. Parameters derived from the photosynthesis–irradiance curves indicated adaptation to low irradiance for all freshwater red algae tested, confirming that they tend to occur under low light regimes. Some degree of photo‐inhibition (β= ‐0.33–0.01 mg O2 g?1 DW h?1 (μmol photons m?2 s?1)?1) was found for all species/populations analyzed, whereas light compensation points (Ic) were very low (≤ 2 μmol photons m‐ photons s?1) for most algae tested. Saturation points were low for all algae tested (Ik = 6–54 μmol photons m?2 s?1; Is = 20–170 umol photons m?2 s?1). Rates of net photosynthesis and dark respiration responded to the variation in temperature. Optimum temperature values for net photosynthesis were variable among species and populations so that best performances were observed under distinct temperature conditions (10, 15, 20 or 25°C). Rates of dark respiration exhibited an increasing trend with temperature, with highest values under 20–25°C. Results from pH experiments showed best photosynthetic performances under pH 8.5 or 6.5 for all but one species, indicating higher affinity for inorganic carbon as bicarbonate or indistinct use of bicarbonate and free carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for all algae tested, which was characterized by two relatively clear peaks, with some variations around it: a first (higher) during the morning (07.00–11.00 hours.) and a second (lower) in the afternoon (14.00–18.00 hours). Comparative data between the ‘Chantransia’ stage and the respective gametophyte for one Batrachospermum population revealed higher values (ca 2‐times) in the latter, much lower than previously reported. The physiological role of the ‘Chantransia’ stage needs to be better analyzed.  相似文献   

12.
Abstract A close, immediate and precise relationship between chlorophyll a fluorescence and photosynthetic carbon assimilation in vivo is demonstrated. The examples discussed include kinetics displayed during dark to light transitions plus oscillations and transients observed during changes in the gas phase surrounding the leaf. Remaining uncertainties surrounding the relationship between chlorophyll fluorescence and photosynthesis are attributed to the underlying complexity of the regulatory mechanisms involved. Examples are also given that show how multiple simultaneous measurements of different aspects of the photosynthetic process may contribute to the resolution of these uncertainties. The practical relevance of these matters is also discussed, particularly in relation to the limitations of the photosynthetic process and to the use of chlorophyll fluorescence as a diagnostic probe of chemical and genetic manipulation and stress.  相似文献   

13.
Light‐to‐dark transitions represent one of the most crucial environmental stresses that photosynthetic organisms must cope with, since substantial metabolism adaptations are required in order to utilize alternative energy and carbon sources. Although signal transduction systems for changing light regimes are not sufficiently understood, calcium has been implicated in plants as a second messenger in light‐on and light‐off events. Much less is known about light signalling in cyanobacteria, but it has been shown that calcium probably performs similar signalling roles in these organisms and other prokaryotes. Herein it is reported that light‐to‐dark transitions trigger a calcium transient in aequorin expressing Anabaena sp. PCC7120. The magnitude of this transient depends on the fluence rate previously irradiated and can reach a peak height over 2 µm free calcium when the fluence rate of light is around 400 µmol photons s?1 m?2. The use of increasing calcium concentration, ethylene glycol‐bis (β‐aminoethylether) N,N,N′,N′‐tetraacetic acid (EGTA), verapamil and trifluoperazine indicated that these transients are originated by a calcium influx probably through verapamil‐sensitive Ca2+ channels and are probably modulated by calcium‐binding proteins. Experiments with different light spectral qualities and the photosynthetic inhibitors 3‐(3,4 dichlorophenyl)1,1,dimelthylurea (DCMU) and 3,5‐dibromo‐3‐methyl‐b‐isopropyl‐p‐benzoquinone (DBMIB) indicate that the calcium transient triggered by the light‐to‐dark transition is not coupled to a specific photoreceptor but rather to changes in the redox state of photosynthetic electron transport chain components other than the plastoquinone pool.  相似文献   

14.
Responses of photosynthetic rates, determined by oxygen evolution using the light and dark bottles technique, to different temperatures, irradiances, pH, and diurnal rhythm were analyzed under laboratory conditions in four charophyte species (Chara braunii Gmelin, C. guairensis R. Bicudo, Nitella subglomerata A. Braun and Nitella sp.) from lotic habitats in southeastern Brazil. Parameters derived from the photosynthesis versus irradiance curves indicated affinity to low irradiances for all algae tested. Some degree of photoinhibition, [β= ‐(0.30–0.13) mg O2 g?1 dry weight Ir1 (μmol photons m?2 s?1)?1], low light compensation points (Ic= 4–20 μmol photons m?2 s?1) were found for all species analyzed, as well as low values of light saturation parameter (Ik) and saturation (Is) 29–130 and 92–169 μmol photons m?2 s?1, respectively. Photoacclimation was observed in two populations of N. subglomerata collected from sites with different irradiances, consisting of variations in photosynthetic parameters (higher values of a, and lower of Ik and maximum photosynthetic rate, Pmax, in the population under lower irradiance). The highest photosynthetic rates for Chara species were observed at 10–15°C, while for Nitella the highest photosynthetic rate was observed at 20–25°C, despite the lack of significant differences among most levels tested. Rates of dark respiration significantly increase with temperature, with the highest values at 25°C. The results from pH experiments showed highest photosynthetic rates under pH 4.0 for all algae, suggesting higher affinity for inorganic carbon in the form of carbon dioxide, except in one population of N. subglomerata, with similar rates under the three levels, suggesting indistinct use of bicarbonate and carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for most algae tested, which was characterized by two peaks: the first (higher) during the morning (07.00–11.00) and the second (lower) in the afternoon (14.00–17.00). This suggests an endogenous rhythm determining the daily variations in photosynthetic rates.  相似文献   

15.
The success of P. juliflora, an evergreen woody species has been largely attributed to temperature acclimation and stomatal control of photosynthesis under wide range of environmental conditions prevalent in India. We studied the contribution of the enzyme ribulose-1,5 bisphosphate carboxylase/oxygenase (Rubisco) in diurnal and seasonal photosynthesis changes in P. juliflora. The changes observed in photosynthesis under natural conditions could be effected by the growth temperatures, which ranged from 10–30 °C in winter to 30–47 °C in summer. However, the Total Rubisco activity displayed a constant diurnal pattern and showed a maximum at 1200 in all seasons namely spring, summer, monsoon and winter irrespective of the changes in temperature. The Total Rubisco activity from two cohorts of leaves produced in spring and monsoon appeared to be down-regulated differentially at low PPFD during the evening. The in vivo and in vitro measurements of carboxylation efficiency of Rubisco showed wide variation during the day and were correlated with the photosynthesis rate. The light activation of Rubisco showed the acclimation to moderately high temperatures in different seasons except in summer. The exceptionally high temperatures (>45 °C) in summer, though not affecting Total activity, severely inhibited the light activation of Rubisco and also modulated the recovery process for the activation of Rubisco. Our studies suggest that the modulation of Rubisco driven by Rubisco activase and not Rubisco per se was crucial for the diurnal regulation of photosynthesis. NBRI Publication No.: 528  相似文献   

16.
以弱光敏感型番茄品种‘基尔斯’为试验材料,采用营养液栽培,研究了外源24-表油菜素内酯对弱光胁迫下番茄幼苗叶片形态和光合特性的影响.结果表明:弱光胁迫下番茄幼苗叶片形态产生适应性变化,叶面积、比叶面积、茎叶夹角、茎叶垂角、垂度均显著提高,而叶片干质量显著降低;最大净光合速率、表观量子效率、暗呼吸速率、羧化效率、Rubisco大亚基含量均显著降低,而光补偿点和CO2补偿点显著升高.弱光胁迫下叶面喷施24-表油菜素内酯后,叶面积、叶片干质量、茎叶夹角、茎叶垂角分别增加14.1%、57.1%、12.3%和7.7%,比叶面积、垂度分别减小30.5%和10.6%;表观量子效率、暗呼吸速率、羧化效率分别提高20.4%、17.9%和9.3%,光补偿点、CO2补偿点分别降低21.9%和4.3%,差异均达到显著水平;Rubisco大亚基含量也显著升高.说明外源24 表油菜素内酯可以通过提高弱光下番茄幼苗叶片的表观量子效率、暗呼吸速率、羧化效率及Rubisco含量,降低光补偿点和CO2补偿点,并维持叶片形态的稳定性,来改善光合性能,有效缓解弱光胁迫对番茄幼苗的伤害.  相似文献   

17.
The pathway of carbon assimilation in greening roots was compared to the pathway in leaves of Lens culinaris seedlings by means of labelling distribution analysis among the products of 14CO2 fixation in vivo, and in vitro with ribulose 1,5-diphosphate as the substrate. In green leaves, CO2 fixation via ribulose 1,5-diphosphate carboxylase predominated largely while, in green roots, this carboxylase activity and the phosphoenolpyruvate carboxylase contributed almost equally to the whole in vivo CO2 fixation. A participation of the activities of both carboxylases according to the double carboxylation pathway in the synthesis of dicarboxylic acids (malate and aspartate) was demonstrated in vitro after 48 h of greening in roots but seemed to be absent in in vivo experiments.  相似文献   

18.
Pyruvate orthophosphate dikinase (PPDK) was found in various immature seeds of C3 plants (wheat, pea, green bean, plum, and castor bean), in some C3 leaves (tobacco, spinach, sunflower, and wheat), and in C4 (maize) kernels. The enzyme in the C3 plants cross-reacts with rabbit antiserum against maize PPDK. Based on protein blot analysis, the apparent subunit size of PPDK from wheat seeds and leaves and from sunflower leaves is about 94 kdaltons, the same as that of the enzyme from maize, but is slightly less (about 90 kdaltons) for the enzyme from spinach and tobacco leaves. The amount of this enzyme per mg of soluble protein in C3 seeds and leaves is much less than in C4 leaves. PPDK is present in kernels of the C4 plant, Zea mays in amounts comparable to those in C4 leaves.

Regulatory properties of the enzyme from C3 tissues (wheat) are similar to those of the enzyme from C4 leaves with respect to in vivo light activation and dark inactivation (in leaves) and in vivo cold lability (seeds and leaves).

Following incorporation of 14CO2 by illuminated wheat pericarp and adjoining tissue for a few seconds, the labeled metabolites were predominantly products resulting from carboxylation of phosphoenolpyruvate, with lesser labeling of compounds formed by carboxylation of ribulose 1,5-bisphosphate and operation of the reductive pentose phosphate cycle of photosynthesis. PPDK may be involved in mechanisms of amino acid interconversions during seed development.

  相似文献   

19.
We tested the main and interactive effects of elevated carbon dioxide concentration ([CO2]), nitrogen (N), and light availability on leaf photosynthesis, and plant growth and survival in understory seedlings grown in an N‐limited northern hardwood forest. For two growing seasons, we exposed six species of tree seedlings (Betula papyrifera, Populus tremuloides, Acer saccharum, Fagus grandifolia, Pinus strobus, and Prunus serotina) to a factorial combination of atmospheric CO2 (ambient, and elevated CO2 at 658 μmol CO2 mol−1) and N deposition (ambient and ambient +30 kg N ha−1 yr−1) in open‐top chambers placed in an understory light gradient. Elevated CO2 exposure significantly increased apparent quantum efficiency of electron transport by 41% (P<0.0001), light‐limited photosynthesis by 47% (P<0.0001), and light‐saturated photosynthesis by 60% (P<0.003) compared with seedlings grown in ambient [CO2]. Experimental N deposition significantly increased light‐limited photosynthesis as light availability increased (P<0.037). Species differed in the magnitude of light‐saturated photosynthetic response to elevated N and light treatments (P<0.016). Elevated CO2 exposure and high N availability did not affect seedling growth; however, growth increased slightly with light availability (R2=0.26, P<0.0001). Experimental N deposition significantly increased average survival of all species by 48% (P<0.012). However, seedling survival was greatest (85%) under conditions of both high [CO2] and N deposition (P<0.009). Path analysis determined that the greatest predictor for seedling survival in the understory was total biomass (R2=0.39, P<0.001), and that carboxylation capacity (Vcmax) was a better predictor for seedling growth and survival than maximum photosynthetic rate (Amax). Our results suggest that increasing [CO2] and N deposition from fossil fuel combustion could alter understory tree species recruitment dynamics through changes in seedling survival, and this has the potential to alter future forest species composition.  相似文献   

20.
The carboxylation of ribulose-1,5-diphosphate was demonstrated in vitro with extracts of ctiolated seedling roots. The presence of ribulose-1,5-diphosphate carboxylase was characterized in the subcellular fraction enriched in amyloplasts. Synthesis of chlorophyll, development of CO2 fixation capacities and of Hill activity upon illumination have been studied with roots of Lens culinaris seedlings. The marked increases in CO2 fixation with ribulose-1,5-diphosphate as the substrate and in Hill activity that occur after a lag phase seem to be related to cytological changes during the greening of roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号