首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we have measured the dielectric spectrum of water-saturated bones in native and demineralized states up to 1 GHz in the time domain. A novel method of analysis of the time domain spectroscopy data has been used. The results show a dielectric dispersion centered around 400 MHz for native samples and around 200 MHz for demineralized ones. The proposed mechanism for this dispersion is the movement of polar side chains, which is in agreement with what happens in hydrated collagen fibres.  相似文献   

2.
The dielectric properties of sonicated calf-thymus DNA sodium salt in aqueous solutions have been studied in the frequency range from 40 MHz to 2 GHz by time domain spectroscopy (TDS). A dielectric dispersion not previously reported was found, which has a characteristic frequency of about 150 MHz. All of the dielectric parameters are insensitive to the size of DNA fragments and to helix-to-coil transitions. The study of this dispersion as a function of DNA concentration and temperature allows us to conclude that it may be due to counterion fluctuation on short sections, probably in a direction transverse to the macromolecular axis.  相似文献   

3.
Dielectric relaxation measurements of 12 kbp plasmid DNA   总被引:1,自引:0,他引:1  
The dielectric properties of 12 kbp plasmid DNA have been measured as a function of temperature in the range 5 degrees C to 40 degrees C. Time domain reflectometry was used to obtain dielectric data over the frequency range from 200 kHz to 3 GHz. Values of the frequency dependent polarisability per DNA macromolecule have been determined from the measurements. Possible mechanisms that could account for the dielectric dispersion are also discussed, in particular the counterion fluctuation model of Manning-Mandel-Oosawa.  相似文献   

4.
The dielectric constant and conductivity of calf thymus DNA were investigated at frequencies between 0.1 MHz and 70 GHz. This work is to investigate the dielectric properties of DNA in low gigahertz region and also to study whether the dielectric behavior of the water is affected by the presence of highly charged DNA. The results of these measurements indicate the presence of two anomalous dispersions, the one between 1 MHz and 1 GHz and the second one above 1 GHZ. The dispersion at low frequencies is likely to arise from polar groups in the DNA molecule. The relaxation behavior of unbound water in DNA solution is only slightly affected by the presence of DNA at concentrations below 1%.  相似文献   

5.
We summarize the results of several of our recent studies on the dielectric properties of protein solutions, tissues, and nonionic microemulsions at microwave frequencies extending to 18 GHz. The data in all cases are analyzed using the Maxwell mixture theory to determine the dielectric properties of the suspending water and the amount and dielectric properties of the water of hydration associated with the suspended phase. The dielectric data from the protein solutions and tissues are broadly consistent with the results of previous studies at UHF frequencies; they indicate hydration values in the range of 0.4–0.6 g water/g protein. There is evidence of a dielectric relaxation process occurring at low-GHz frequencies that can be attributed in part to dielectric relaxation of the “bound” water in the system. The remaining solvent water appears to have dielectric properties close to, if not precisely the same as, those of pure water. The average relaxation frequency of the suspending water in the microemulsions is reduced from that of pure water, evidently reflecting an average of that of the water of hydration (~5–6 GHz) and that of pure water. This reduced average relaxation frequency implies an increased average viscosity of the water and (by Walden's rule) accounts for the unexpectedly low ionic conductivity of the preparations.  相似文献   

6.
Microwave dielectric relaxation in muscle. A second look.   总被引:1,自引:1,他引:0       下载免费PDF全文
The dielectric permittivity and conductivity of muscle fibers from the giant barnacle, Balanus nubilus, have been measured at 1, 25, and 37 degrees C, between 10 MHz and 17 GHz. The dominant microwave dielectric relaxation process in these fibers is due to dipolar relaxation of the tissue water, which shows a characteristic relaxation frequency equal to that of pure water, ranging from 9 GHz (1 degree C) to 25 GHz (37 degree C). The total permittivity decrease, epsilon 0 -- epsilon infinity, due to this process accounts for approximately 95% of the water content of the tissue; thus, the major fraction of tissue water is dielectrically identical to the pure fluid on a picosecond time scale. A second dielectric process contributes significantly to the tissue dielectric properties between 0.1 and 1--5 GHz, and arises in part form Maxwell-Wagner effects due to the electrolyte content of the tissue, and in part from dielectric relaxation of the tissue proteins themselves.  相似文献   

7.
8.
The dielectric behavior of the aqueous solutions of three widely differing macromolecules has been investigated: myoglobin, polyvinylpyrrolidone (PVP), and human serum low-density lipoprotein (LDL). It was not possible to interpret unambiguously the dielectric properties of the PVP solution in terms of water structure. The best interpretation of the dielectric data on the myoglobin and LDL solutions was that, in both cases, the macromolecule attracts a layer of water of hydration one or two water molecules in width. For LDL, this corresponds to a hydration factor of only 0.05 g/g, whereas for myoglobin the figure is nearer 0.6 g/g. With myoglobin, part of the water of hydration exhibits its dispersion at frequencies of a few GHz, and the rest disperses at lower frequencies, perhaps as low as 10-12 MHz. The approximate constancy of the width of the hydration shell for two molecules as dissimilar in size as LDL and myoglobin confirms that the proportion of water existing as water of hydration in a biological solution depends critically on the size of the macromolecules as well as on their concentration.  相似文献   

9.
This paper investigates the dielectric properties of urine in normal subjects and subjects with chronic kidney disease (CKD) at microwave frequency of between 0.2 GHz and 50 GHz. The measurements were conducted using an open-ended coaxial probe at room temperature (25°C), at 30°C and at human body temperature (37°C). There were statistically significant differences in the dielectric properties of the CKD subjects compared to those of the normal subjects. Statistically significant differences in dielectric properties were observed across the temperatures for normal subjects and CKD subjects. Pearson correlation test showed the significant correlation between proteinuria and dielectric properties. The experimental data closely matched the single-pole Debye model. The relaxation dispersion and relaxation time increased with the proteinuria level, while decreasing with the temperature. As for static conductivity, it increased with proteinuria level and temperature.  相似文献   

10.
Dielectric measurements have been carried out on partially hydrated collagen in the frequency ranges 100 kHz–5 MHz, 100 MHz–1 GHz, and 8–23 GHz. In the low-frequency range, a dispersion was observed around 100 kHz which results from inhomogeneous conductivity of the samples. A dielectric relaxation was observed aroud 0.3 GHz using time-domain-spectroscopy techniques. This relaxation can be considered to originate from mobile side chains. Microwave measurements indicate that the water relaxation may extend into the 10-GHz region. An apparent discrepancy between the main water relaxation time and the average rotational correlation time of water as measured by nmr line widths was resolved by the assumption that a fraction of the water molecules is bound to the collagen with residence times on the order of 10?6 sec, whereas the remainder of the water is only weakly bound and exhibits rotational rates on the order of 10?10 sec.  相似文献   

11.
The dielectric properties of biologically and pharmaceutically important low-molecular weight ethylene glycols H(-OCH2CH2-)n -OH (n = 1,2,4,6) were investigated to clarify the effect of chain length on the dielectric properties. The measurement of dielectric constant and dielectric loss was carried out over the frequency range 200 MHz to 20 GHz at temperatures of 25 degrees C to 55 degrees C. It is found that in these molecules microwave dielectric losses are significant. The dispersion behaviour of these molecules can be represented by Cole-Cole equation. The dielectric properties of these homologous ethylene glycols are discussed in terms of the effects of chain length and intermolecular hydrogen bonds regarding the molecular conformations. These wide frequency range dielectric data have also been discussed in view of the suitable selection of the oligomer of ethylene glycol for cosmetic preparations and other pharmaceutical applications with the intention of protection of the skin from weak microwave radiations present in the surrounding environment. These systematic microwave dielectric data with frequency and temperature variation are not available and are provided in this paper.  相似文献   

12.
The complex permittivity of sonicated aqueous solutions of purified dimyristoylphosphatidylcholine has been measured as a function of frequency between 3 kHz and 40 GHz. The dielectric spectrum of the samples shows two dispersion/absorption regions, one centered at about 80 MHz the other at about 20.GHz (30°C). Otherwise than in previous studies no additional dispersion/absorption process has been found at frequencies below 10 MHz.The complex dielectric spectrum of the samples is discussed with respect to the dynamical state of solvent water in solutions of single-bilayer vesicles. The main relaxation time of the solvent water, τ1 ((2πτ1)?1 ≈ 20 GHz), is smaller than that of pure water, τW, at the same temperature. This effect results from the action of internal depolarizing fields which obviously overcompensate and enhancement of τ1 due to specific solute/solvent interactions (hydration) as had been previously found with micellar solutions of lysolecithins.It cannot be excluded, that some solvent water shows unusual dynamical behaviour. If there exists a substantial amount of such motionally perturbed water, however, it must be characterized by a relaxation time close to that of the phosphorylcholine zwitterions, τ2 ((2πτ2)?1 ≈ 80 MHz).  相似文献   

13.
On the basis of the two-state model of a polyelectrolyte solution, the ion concentration in the polymer domain has been calculated by using the spherical Poisson–Boltzmann equation. The ion accumulation in the neighboring of the polyion influences, on different time scales, various electrical properties of the solution, in particular the low-frequency electrical conductivity and the high-frequency dielectric dispersion. These predictions have been compared with recent dielectric measurements on poly (L -glutamic acid) aqueous solutions during the conformational transition from the α-helix to random coil, and a satisfactory agreement has been found. This finding suggests that counterion distribution plays a different role in determining the electrical properties of charged polymer solutions, causing a electrophoretic contribution of the polymer domain to the electrical conductivity and influencing the high-frequency dielectric dispersion. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Microwave dielectric measurements of erythrocyte suspensions.   总被引:1,自引:1,他引:0       下载免费PDF全文
J Z Bao  C C Davis    M L Swicord 《Biophysical journal》1994,66(6):2173-2180
Complex dielectric constants of human erythrocyte suspensions over a frequency range from 45 MHz to 26.5 GHz and a temperature range from 5 to 40 degrees C have been determined with the open-ended coaxial probe technique using an automated vector network analyzer (HP 8510). The spectra show two separate major dispersions (beta and gamma) and a much smaller dispersion between them. The two major dispersions are analyzed with a dispersion equation containing two Cole-Cole functions by means of a complex nonlinear least squares technique. The parameters of the equation at different temperatures have been determined. The low frequency behavior of the spectra suggests that the dielectric constant of the cell membrane increases when the temperature is above 35 degrees C. The real part of the dielectric constant at approximately 3.4 GHz remains almost constant when the temperature changes. The dispersion shifts with temperature in the manner of a thermally activated process, and the thermal activation enthalpies for the beta- and gamma-dispersions are 9.87 +/- 0.42 kcal/mol and 4.80 +/- 0.06 kcal/mol, respectively.  相似文献   

15.
Hydration properties of adenine nucleotides and orthophosphate (Pi) in aqueous solutions adjusted to pH = 8 with NaOH were studied by high-resolution microwave dielectric relaxation (DR) spectroscopy at 20 °C. The dielectric spectra were analyzed using a mixture theory combined with a least-squares Debye decomposition method. Solutions of Pi and adenine nucleotides showed qualitatively similar dielectric properties described by two Debye components. One component was characterized by a relaxation frequency (fc = 18.8-19.7 GHz) significantly higher than that of bulk water (17 GHz) and the other by a much lower fc (6.4-7.6 GHz), which are referred to here as hyper-mobile water and constrained water, respectively. By contrast, a hydration shell of only the latter type was found for adenosine (fc ~ 6.7 GHz). The present results indicate that phosphoryl groups are mostly responsible for affecting the structure of the water surrounding the adenine nucleotides by forming one constrained water layer and an additional three or four layers of hyper-mobile water.  相似文献   

16.
UHF-dielectrometry method is based on the following facts: i) there is dispersion (i.e. dependence on frequency) of the dielectric permeability epsilon; ii) bound and free water have remarkable different epsilon, mobility and dispersion regions; iii) conformational changes in a macromolecule lead to redistribution of free and bound water and to change of the amount of free water molecules. Choosing the working frequency in the region of dispersion of free water molecules (9.2 GHz) we can detect conformational changes in proteins using free water as a marker. In this work the temperature dependencies of dielectric parameters of albumin and fibrinogen solutions were obtained in the temperature interval 5-40 degrees C. In contrast to dependencies for poor solvent, temperature dependencies of dielectric parameters for protein solutions are of non-monotonous character; they have a number of peculiarities in the temperature ranges of 8-10, 22-24 and 34-36 degrees C. At these temperatures redistribution of free and bound water in protein-water system occurs due to structural changes in protein molecules. In this work the mechanism of temperature changes of spatial organisation of protein molecules was proposed. Perhaps, this mechanism is responsible for maintenance of thermal stability of the functionally active conformation of native proteins.  相似文献   

17.
Time-domain dielectric spectroscopy has been employed to probe the hydration properties and structural flexibility of chymotrypsin (EC 3.4.21.1). The dielectric properties of the hydrated protein above 100 MHz have been used to identify two categories of protein-bound water, the first being irrotationally bound to the protein with a second, relatively weakly bound, having a rotational freedom comparable with that of normal bulk water. A dielectric dispersion observed, centred at 12 MHz, has been attributed to the relaxation of the polar components of the protein structure. This dielectric loss became increasingly significant above a transition in the hydration dependence, where water is relatively weakly bound to the chymotrypsin. This is discussed in terms of the formation of water clusters on the protein surface which screen electrostatic interactions between protein-charged groups.  相似文献   

18.
The complex dielectric permitivity of human skin was measured at a frequency of 42 GHz, and a method for calculating water content in skin tissues in vivo was proposed. The water content reaction of skin to standard physical exercises and nontoxic doses of nicotine was investigated. The functionally related changes in skin dielectric properties were interpreted as structural rearrangements of water contained in blood and tissues fluids.  相似文献   

19.
The dielectric properties of the Tobacco Mosaic Virus (TMV) have been measured using time domain dielectric spectroscopy (TDDS) in the temperature range from 1 to 40 degrees C. A single dielectric dispersion is observed in the MHz range. The activation energy of the process is found to be in the range 1-2 kcal/mol. The experimental data could not be completely accounted for by current theoretical models, but evidence indicates that the dielectric loss arises from polarisation of charge on and around the virus.  相似文献   

20.
We consider the influence of the molecular structure of phospholipid membranes on their dielectric properties in the radio frequency range. Membranes have a stratified dielectric structure on the submolecular level, with the lipid chains forming a central hydrophobic layer enclosed by the polar headgroups (HGs) and bound water layers. In our numerical model, isotropic permittivities of 2.2 and 48.8 were assigned to the lipid chain and bound water layers, respectively. The HG region was assumed to possess an anisotropic static permittivity with 142.2 and 30.2 in the tangential and normal directions, respectively. The permittivities of the HG and bound water regions have been assumed to disperse at frequencies around 51 and 345 MHz to become 2.2 and 1.8, respectively, in both the normal and tangential directions. Electric field distribution and absorption were calculated for phospholipid vesicles with 75 nm radius as an example. Significant absorption has been obtained in the HG and bound water regions. Averaging the membrane absorption over the layers resulted in a decreased absorption below 1 GHz but a more than 10-fold increase above 1 GHz, compared to a model with a homogeneous membrane of averaged properties. We propose single particle dielectric spectroscopy by AC electrokinetics at low-bulk medium conductivities for an experimental verification of our model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号