首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I S Zagon  P J McLaughlin 《Life sciences》1992,50(16):1179-1187
An opioid growth factor (OGF), [Met5]-enkephalin, interacts with the zeta (zeta) opioid receptor to modulate development of eukaryotes. We have found that [Met5]-enkephalin, an endogenous opioid peptide serves to inhibit the growth of S. aureus. This effect on growth involves cell proliferative events and is under tonic control, since potent opioid antagonists accelerate cell replication. Both the OGF and zeta opioid receptor were associated with these microorganisms. Other opioid receptors (mu, delta and kappa) were not detected. OGF also controlled the growth of other bacteria: P. aeruginosa and S. marcesans. These results indicate that OGF and its receptor, known to be important in the regulation of mammalian development, also function in the growth of simple unicellular organisms. We suggest that the endogenous opioid system related to growth originated billions of years ago.  相似文献   

2.
3.
Opioid peptides serve as tonically active negative growth regulators in renewing and regenerating epithelia. To examine the involvement of opioids in renewal of the stratum corneum after tape stripping of tail skin, C57BL/6 J mice were given systemic injections of the potent opioid antagonist, naltrexone (NTX, 20 mg/kg i.p.) following injury. Blockade of opioidreceptor interaction by NTX for 4 h resulted in an elevation of 36–;66% in basal cell DNA synthesis measured 24 h after injury. Injection of the endogenous opioid peptide, [Met5]-enkephalin (OGF, 10 mg/kg i.p.) 4 h before termination, suppressed radiolabelled thymidine incorporation in the basal cell layer by 37–46%at 24 h after wounding. The magnitude of the effects on DNA synthesis of OGF, but not NTX, depended on the timing of administration with respect to injury. OGF maximally depressed basal cell labelling (72%) when given 16 h after tape stripping. Concomitant administration of naloxone (10 mg/kg) with OGF blocked the inhibition of DNA synthesis; naloxone alone at the dosage utilized had no effect on cell labelling. Both OGF and its receptor, OGFr, were detected by immunocytochemistry in the basal and suprabasal cell layers, but not the cornified layer of tape stripped and uninjured tail skin. These results indicate: (a) a native opioid peptide and its receptor are expressed in epidermal cells of injured and uninjured mouse tail skin; (b) removal of the stratum corneum by tape stripping does not disrupt the function of the endogenous opioid growth system; (c) the proliferative response to wounding of the tail is tonically inhibited by the receptor-mediated action of an endogenous opioid peptide; and (d) DNA synthesis by basal cells can be elevated by disrupting opioid peptidereceptor interactions.  相似文献   

4.
In the first series of experiments on the isolated mouse vas deferens and guinea-pig ileum the capacity of 10 opioid peptides to activate mu- and delta-receptors was evaluated. [DAla2, DLeu5]-enkephalin (DADLE) and [DAla2, MePhe4, Gly5-ol]-enkephalin (DAMPGE) were the most selective agonists of delta- and mu-opiate receptors, respectively. In the second series of experiments on urethan-anesthetized rats it was shown, that intravenous administration of DADLE or DAMPGE (10(-7) M/kg each) elicited hypotension, bradycardia and expiratory apnoe. These effects disappeared both after naloxone injection and bilateral cervical vagotomy. A reflex nature of the vegetative effects of opioid peptides and the role of both mu- and delta-receptors in their realization are suggested.  相似文献   

5.
The role of endogenous opioids in immunological mechanisms was examined by subjecting athymic (nu/nu) mice to chronic injections of the opioid agonist [Met5]-enkephalin (MET) or continuous opioid receptor blockade with naltrexone (NTX). After 8 days of treatment, neither excess peptide nor deprivation of opioids from receptors had any effect on body weight, spleen index (spleen to body weight ratio), total and differential white blood cell counts, and natural killer (NK) cell activity in peripheral blood or splenic lymphocytes. At 28 days, chronic treatment with MET or NTX had no effect on any of these parameters with the exception of an elevation from controls in NK cell activity in peripheral blood in mice receiving NTX, and subnormal NK cell activity related to splenic lymphocytes in the MET group. These results suggest that chronic exposure to an opioid agonist, or persistent opioid receptor blockade, have little influence on a variety of immunological properties in athymic mice, suggesting that native opioids such as MET do not play a marked role in defense mechanisms in the athymic mouse.  相似文献   

6.
Mitragynine is an indole alkaloid isolated from the Thai medicinal plant Mitragyna speciosa. We previously reported the morphine-like action of mitragynine and its related compounds in the in vitro assays. In the present study, we investigated the opioid effects of 7-hydroxymitragynine, which is isolated as its novel constituent, on contraction of isolated ileum, binding of the specific ligands to opioid receptors and nociceptive stimuli in mice. In guinea-pig ileum, 7-hydroxymitragynine inhibited electrically induced contraction through the opioid receptors. Receptor-binding assays revealed that 7-hydroxymitragynine has a higher affinity for micro-opioid receptors relative to the other opioid receptors. Administration of 7-hydroxymitragynine (2.5-10 mg/kg, s.c.) induced dose-dependent antinociceptive effects in tail-flick and hot-plate tests in mice. Its effect was more potent than that of morphine in both tests. When orally administered, 7-hydroxymitragynine (5-10 mg/kg) showed potent antinociceptive activities in tail-flick and hot-plate tests. In contrast, only weak antinociception was observed in the case of oral administration of morphine at a dose of 20 mg/kg. It was found that 7-hydroxymitragynine is a novel opioid agonist that is structurally different from the other opioid agonists, and has potent analgesic activity when orally administered.  相似文献   

7.
Various opioid receptor agonists, including Met5-enkephalin amide, Leu5-enkephalin amide, [D-Ala]2-Met5-enkephalin amide, [D-Ala]2-Leu5-enkephalin amide, morphine sulfate, d-methadone hydrochloride, and l-methadone hydrochloride were administered to adult male rats by subcutaneous injection. All opioid receptor agonists except Leu5-enkephalin amide significantly stimulated growth hormone and prolactin release. Naloxone and naltrexone blocked the hormone stimulatory effects of the opioids and both naloxone and naltrexone, when administered alone, significantly reduced serum growth hormone and prolactin concentrations. The dopaminergic agonist apomorphine, but not the alpha-adrenergic agonist clonidine, blocked opiate stimulation of prolactin. Morphine sulfate caused growth hormone release in rats pretreated with alpha-methyl-p-tryosine, a catecholamine synthesis inhibitor. Cholinergic agonists, physostigmine and pilocarpine, antagonized the growth hormone and prolactin release induced by morphine sulfate. The data suggest that the opiates stimulate prolactin via an interaction with catecholaminergic neurons controlling prolactin release and stimulate growth hormone via a mechanism independent of alpha-adrenergic or general catecholaminergic influence. The mechanism through which cholinergic agonists act to inhibit opiate agonist stimulation of growth hormone is presently unknown.  相似文献   

8.
The effects of the ACTH 4-9 analog (Org 2766) and the COOH-terminal tripeptide of Org 2766 (Phe-D-Lys-Phe; PDLP) on retrieval of one-trial learning passive avoidance behavior were compared with those of beta-endorphin, [Met5]-enkephalin, [D-Ala2,Met5]-enkephalin, des-Tyr1-[Met5]-enkephalin and des-enkephalin-gamma-endorphin (DE gamma E). Amounts of intracerebroventricularly administered Org 2766, PDLP, [Met5]-enkephalin, [D-Ala2,Met5]-enkephalin and DE gamma E, which induced a comparable attenuation of passive avoidance behavior were determined. Pretreatment with the opiate antagonist naltrexone prevented the attenuating effect of these peptides on passive avoidance behavior except that of DE gamma E. The attenuating effect of Org 2766 and of [Met5]-enkephalin was reversed to facilitation of passive avoidance behavior in the presence of naltrexone. Subcutaneous treatment with Org 2766 and [D-Phe7]-ACTH 4-10 decreased electrical self-stimulation behavior elicited from the medial septal area. Naltrexone prevented the inhibitory effect of Org 2766 on this behavior, but not that of [D-Phe7]-ACTH 4-10. Although the attenuating effect of PDLP on passive avoidance behavior was not reduced by pretreatment with [Met5]-enkephalin- or beta-endorphin-antiserum, and PDLP induced neither analgesia nor excessive grooming, the data suggest that the inhibitory effect of Org 2766 and PDLP on passive avoidance behavior and electrical self-stimulation are mediated by endorphin systems in the brain.  相似文献   

9.
Since both aminopeptidases and angiotensin I-converting enzyme are reported to degrade circulating enkephalins, we have examined the degradation of low-molecular-weight opioid peptides by a vascular plasma membrane-enriched fraction previously shown to contain both angiotensin I-converting enzyme (EC 3.4.15.1) and aminopeptidase M (EC 3.4.11.2). Except for an enkephalin analog resistant to amino-terminal hydrolysis, [D-Ala2]enkephalin, the purified vascular plasma membrane preferentially degraded low-molecular-weight opioids by hydrolysis of the N-terminal Tyr-1--Gly-2 bond. Enkephalin degradation was optimal at pH 7.0 and was inhibited by the aminopeptidase inhibitors amastatin (I50 = 0.08 microM), bestatin (9.0 microM) and puromycin (80 microM). Maximal rates of hydrolysis, calculated per mg plasma membrane protein, were highest for the shorter peptides (18.3, 15.6 and 16.6 nmol/min per mg for Met5-enkephalin, Leu5-enkephalin and Leu5-enkephalin-Arg6, respectively) and decreased with increasing peptide length (0.7 nmol/min per mg for dynorphin (1-13)). No significant hydrolysis of beta- and gamma-endorphin was detected. Km values decreased significantly with increasing peptide length (Km = 72.9 +/- 2.7, 43.6 +/- 4.7 and 21.4 +/- 0.9 microM for Met5-enkephalin, Leu5-enkephalin-Arg6 and Met5-enkephalin-Arg6-Phe7, respectively). However, no further decreases were seen with even larger sequences, i.e., dynorphin(1-13). Other peptides hydrolyzed by the plasma membrane aminopeptidase (angiotensin III, kallidin and hepta(5-11)-substance P) inhibited enkephalin degradation in a competitive manner. Thus, localization, specificity and kinetic data are consistent with identification of aminopeptidase M as a vascular enzyme with the capacity to differentially metabolize low-molecular-weight opioid peptides within the microenvironment of vascular cell surface receptors. Such differential metabolism may play a role in modulating the vascular effects of peripheral opioids.  相似文献   

10.
4-Amino-5-oxo-8-(beta-D-xylofuranosyl)pyrido[2,3-d]pyrimidine (4) was recently synthesized and evaluated in our laboratories for anticancer activities. This compound showed potent in vitro inhibitory effects on the growth of HTB-81 prostate cancer cells and Daudi-lymphoma. In vivo studies showed that the compound could inhibit HTB-81 tumor growth in syngeneic mice by 93% at a daily dose of 8.5 mg/kg for 10 days.  相似文献   

11.
We examined scratch-inducing effects of intracisternal, intrathecal and intradermal injections of morphine and some opioid agonists in mice. Intracisternal injection of morphine (3 nmol/animal) and the mu-receptor agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]enkephalin (DAMGO; 0.2 nmol/animal) elicited scratching of the face, with little effect on scratching of the trunk. Intracisternal injection of the delta-receptor agonist [D-Pen(2,5)]enkephalin (DPDPE) and the kappa-receptor agonist U50488 were without effects. Intrathecal injection of morphine (0.1-3 nmol/animal) produced a dose-dependent increase in body scratching, with little effects on face scratching. Face scratching induced by intrathecal morphine (3 nmol/animal) was almost abolished by subcutaneous pretreatment with naloxone (1 mg/kg). Intradermal injections of morphine (3-100 nmol/site), DAMGO (1-100 nmol/site), DPDPE (10 and 100 nmol/site) and U50488 (10-100 nmol/site) did not elicit scratching of the site of injection. Intradermal injection of histamine (100 nmol/site) induced the scratching in ICR, but not ddY, mice and serotonin (30 and 50 nmol/site) elicited the scratching in either strain of mice. The results suggest that opioids induce scratching, and probably itching, through central mu-opioid receptors in the mouse.  相似文献   

12.
Metorphamide is a [Met]-enkephalin-containing opioid octapeptide with a C-terminal alpha-amide group. It is derived from proenkephalin and is, so far, the only endogenous opioid peptide with a particularly high affinity for mu opioid (morphine) receptors, a somewhat lesser affinity for kappa opioid receptors, and a relatively low affinity for delta opioid receptors. The concentrations of metorphamide in the bovine caudate nucleus, the hypothalamus, the spinal cord, and the neurointermediate pituitary were determined by radioimmunoassay and chromatography separation procedures. Metorphamide concentrations were compared with the concentrations of eight other opioid peptides from proenkephalin and prodynorphin in identical extracts. The other opioid peptides were [Met]-enkephalyl-Arg6-Phe7 and [Met]-enkephalyl-Arg6-Gly7-Leu8 from proenkephalin; alpha-neoendorphin, beta-neoendorphin, dynorphin A(1-8), dynorphin A(1-17), and dynorphin B from prodynorphin; and [Leu]-enkephalin, which can be derived from either precursor. All opioid peptides were present in all four bovine neural tissues investigated. Metorphamide concentrations were lower than the concentrations of the other proenkephalin-derived opioid peptides. They were, however, similar to the concentrations of the prodynorphin-derived opioid peptides in the same tissues. Marked differences in the relative ratios of the opioids derived from prodynorphin across brain regions were observed, a finding suggesting differential posttranslational processing. Differences in the ratios of the proenkephalin-derived opioids across brain regions were less pronounced. The results from this study together with previous findings on metorphamide's mu opioid receptor binding and bioactivities suggest that the amounts of metorphamide in the bovine brain are sufficient to make this peptide a candidate for a physiologically significant endogenous mu opioid receptor ligand.  相似文献   

13.
Opioid receptors have been characterized in Drosophila neural tissue. [3H]Etorphine (universal opioid ligand) bound stereospecifically, saturably, and with high affinity (KD = 8.8 +/- 1.7 nM; Bmax = 2.3 +/- 0.2 pmol/mg of protein) to Drosophila head membranes. Binding analyses with more specific ligands showed the presence of two distinct opioid sites in this tissue. One site was labeled by [3H]dihydromorphine ([3H]DHM), a mu-selective ligand: KD = 150 +/- 34 nM; Bmax = 3.0 +/- 0.6 pmol/mg of protein. Trypsin or heat treatment (100 degrees C for 15 min) of the Drosophila extract reduced specific [3H]DHM binding by greater than 80%. The rank order of potency of drugs at this site was levorphanol greater than DHM greater than normorphine greater than naloxone much greater than dextrorphan; the mu-specific peptide [D-Ala2,Gly-ol5]-enkephalin and delta-, kappa-, and sigma-ligands were inactive at this site. The other site was labeled by (-)-[3H]ethylketocyclazocine ((-)-[3H]EKC), a kappa-opioid, which bound stereospecifically, saturably, and with relatively high affinity to an apparent single class of receptors (KD = 212 +/- 25 nM; Bmax = 1.9 +/- 0.2 pmol/mg of protein). (-)-[3H]EKC binding could be displaced by kappa-opioids but not by mu-, delta-, or sigma-opioids or by the kappa-peptide dynorphin. Specific binding constituted approximately 70% of total binding at 1 nM and approximately 50% at 800 nM for all three radioligands ([3H]etorphine, [3H]EKC, and [3H]DHM). Specific binding of the delta-ligands [3H][D-Ala2,D-Leu5]-enkephalin and [3H][D-Pen2,D-Pen5]-enkephalin was undetectable in this preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
It has been established in experiments on male mice and rats that caerulein antagonized the behavioural effects of ketamine, an agonist of phencyclidine receptors. Caerulein (75-375 micrograms/kg) and haloperidol (0.1-1.5 mg/kg) suppressed the stereotyped behaviour and motor excitation induced by ketamine (30 mg/kg) in mice. Caerulein and haloperidol failed to affect ketamine-induced ataxia. Caerulein (10 micrograms/kg) and the opioid antagonist naloxone (5 mg/kg) completely blocked the amnestic action of ketamine (30 mg/kg) in passive avoidance experiments on rats. It seems likely that the suppression of the behavioural effects of ketamine by caerulein is related to its functional antagonism with dopamine and opioid receptors.  相似文献   

15.
C Cherdchu  T D Hexum 《Life sciences》1988,43(13):1069-1077
Acute stimulation of bovine adrenal chromaffin cells in culture with 1,1-dimethyl-4-phenylpiperazinium (DMPP) gives rise to a significant increase in secretion of [Met5]-enkephalin immunoreactive material (ME-IRM) into the culture medium (1). Following this secretion the cellular ME-IRM levels do not decrease, suggesting the replenishment of the peptides. The repletion of the cellular ME-IRM appears to result from an increase in processing of large molecular weight peptides containing [Met5]-enkephalin and [Leu5]-enkephalin. Gel filtration chromatography on Bio-Gel P-10 was used to fractionate the enkephalin-like peptides (ELPs) present in the culture media and chromaffin cell extracts. Fractionation was done for samples before and after nicotinic receptor stimulation by DMPP to demonstrate the secretion and repletion of the ELPs. Gel chromatographic profiles of ELPs present in the culture media after DMPP stimulation revealed the presence of 4 peaks, representing different molecular forms of these peptides (Peaks 1-4), with a selective increase in secretion of Peaks 3 and 4. The chromatograms of ELPs extracted from cultured chromaffin cells showed similar patterns to those obtained from ELPs present in the culture medium after stimulation. Analyses of individual peaks after fractionation of cell culture extracts showed an increase in the amount of immunoreactive material found in Peak 4 with a concomitant decrease in the immunoreactivity found in the higher molecular weight peaks (Peaks 1-3). Further purification of Peak 4 from cell extracts on reversed-phase HPLC (RP-HPLC) showed a significant amount of ELPs existed as the sulfoxide derivative of [Met5]-enkephalin. The content of [Met5]-enkephalin sulfoxide (ME-O-enk) did not decrease following DMPP stimulation. We conclude that acute stimulation of nicotinic receptors in the chromaffin cells enhances the processing of proenkephalin precursors to keep pace with the secretion of low molecular weight peptides.  相似文献   

16.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   

17.
Intravenous administration of equimolar doses of CRF (30 μg) and AVP (6 μg) to mature female sheep resulted in elevated plasma concentrations of ACTH and cortisol. Simultaneous administration of equimolar amounts of CRF and AVP resulted in a greater ACTH response compared with the sum of the responses to CRF or AVP given independently. Intravenous bolus administration of the endogenous opioid, Met-enkephalin (2.5 mg), and its potent and long-acting analogue, [D-Ala2,N-Phe4,Met(O)ol5]-enkephalin [FK33–824 (250 μg)], did not alter ACTH or cortisol secretion. Furthermore, naloxone, an opioid receptor antagonist given alone or concurrently with Met-enkephalin or FK33–824, was without effect. Pituitary-adrenal responses to CRF were unaltered by simultaneous administration of Met-enkephalin, FK33–824 or naloxone. These results suggest that in the sheep, opioid involvement in the tonic regulation of pituitary-adrenal function is absent. However, CRF and AVP may act alone or in synergy to control the release of biologically active ACTH from the sheep pituitary gland.  相似文献   

18.
Prejunctional effects of opioids were examined in the perfused mesentery of two species: the rat and rabbit. Use of agonists selective for subtypes of mu, delta, and kappa opioid receptors produced no effect on contractile responses to adrenergic nerve stimulation in the rat perfused mesentery, except for small effects of the kappa agonist EKC, which may be non specific. In contrast, mu, delta and kappa receptors appear to be present in the rabbit. The mu selective agonist, DAMGO, kappa agonist, ethylketocyclazocine, and delta agonists, DPDPE and [Leu5]-enkephalin, all produced significant inhibition of contractile responses to transmural nerve stimulation. The inhibitory effect was greatest for ethylketocyclazocine. To test the possibility that prejunctional activation of alpha 2 adrenoceptors with endogenous norepinephrine might decrease the activity of prejunctional opioid receptors in the rabbit, inhibitory effects of delta and kappa selective agonists were tested in the presence of 10(-7) M yohimbine. Inhibitory responses of the kappa selective agonist ethylketocyclazocine were enhanced, while that of delta selective agonists [Leu5]-enkephalin and DPDPE remained unchanged when yohimbine was present. Thus, the effects of opioids vary and depend on the tissue and receptor subtypes they act upon. Furthermore, the enhanced inhibitory effect of opioid receptor activation in the presence of yohimbine is not found for all opioid receptors.  相似文献   

19.
L F Tseng 《Life sciences》1981,29(14):1417-1424
The inhibition of tail flick response to radiant heat and body temperature changes after intrathecal administration of β-endorphin (β-EP) and D-Ala2-D-Leu5-enkephalin (DADL) were studied in rats. Both opioid peptides caused inhibition of tail flick response. On a molar basis, β-EP was 73% as potent as DADL, but the duration of tail flick inhibition of β-EP was much longer than that of DADL. β-EP induced hyperthermia while DADL did not cause any significant change in body temperature. The tail flick inhibition induced by β-EP (1 nmole) was reversed by 2 mg/kg of naloxone, ip; however, the tail flick inhibition induced by DADL (7 nmole) was not reversed by 2 mg/kg and was incompletely reversed by a higher dose of naloxone one (6 mg/kg, ip). These studies demonstrate the existence of naloxone-resistant opioid receptors in the spinal cord which are sensitive to enkephalin. These results indicate that the opioid receptors involved in the production of opioid responses in the spinal cord are different from those in supraspinal brain areas.  相似文献   

20.
P J McLaughlin  I S Zagon 《Life sciences》1987,41(12):1465-1472
The role of endogenous opioid systems (endogenous opioids and opioid receptors) in human cancer was explored using an opioid antagonist paradigm and neuroblastoma cells (SK-N-MC) transplanted into nude mice. Mice inoculated with 2.5 X 10(6) neuroblastoma cells received daily injections of either 0.1 or 10 mg/kg naltrexone (=0.1 and 10 NTX groups) which blocked the opioid receptor for 6-8 hr/day or the entire 24 hr/day, respectively, or sterile water. The latency for appearance of a measurable tumor (5 mm diameter) in the 0.1 NTX group was 27% longer than controls (11 days), and the first death in this group occurred 33% later than controls (day 27). Mice inoculated with tumor cells in the 10 NTX group had an acceleration (18%) in the latency of tumor appearance and, 2 weeks after cell inoculation, 70% of the mice in this group had tumors, in contrast to 10% of the controls. At the termination of the experiment (day 45), only 33% of the 10 NTX group were alive, in contrast to 90% of the controls. Receptor binding assays using DAGO, DADLE, or EKC revealed specific saturable binding only for DADLE and EKC. NTX administration resulted in a 148-186% increase in density for both binding sites, but no changes in binding affinity. Measures of opioid levels showed that tumor tissue levels of both beta-endorphin and methionine-enkephalin were elevated 2.5 to 6.5 fold from control values in both NTX groups, whereas plasma beta-endorphin was subnormal by 4 to 6 fold. These results indicate that endogenous opioid systems regulate human neuro-oncogenesis, with opioids being active inhibitors of growth. Opioid antagonists up-regulate receptors and increase tissue levels of endogenous opioids and, under conditions in which the opioid antagonist is short-acting (e.g., 0.1 NTX), can have an exaggerated antitumor effect during the interval when the antagonist is no longer present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号