首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A monoclonal antibody (mAb), SPV-L14, was raised that detected a human T-cell surface antigen with a molecular weight (MW) of 120 kDa on resting and phytohemagglutinin-activated peripheral blood T lymphocytes (PBL). An additional band with a MW of 130 kDa could be precipitated with variable intensities from thymocytes, neoplastic T cells, and CD4+- or CD8+ T-cell clones. Based on their reactivity with SPV-L14 and a mAb directed against CD3, four subpopulations of CD2+ lymphocytes could be detected and their existence was confirmed at the clonal level. The majority (95%) of the CD3+ cells were SPV-L14+, whereas 5% were CD3+, SPV-L14-. Among cloned cell lines CD3-,SPV-L14- and CD3-,SPV-L14+ cells were found to exist. The CD3-,SPV-L14- and CD3-,SPV-L14+ clones were shown to have NK cell activity, indicating that the 120- to 130-kDa antigen is expressed heterogeneously on CD3- NK cell clones. In addition, neoplastic T cells representing these four subpopulations were shown to exist. Although the tissue distribution and the MW of the SPV-L14 target antigen strongly suggest that SPV-L14 reacts with an epitope on CD6, the SPV-L14 mAb did not react with resting or activated B cells or with malignant B cells. Blocking studies showed that SPV-L14 inhibited the proliferative response of PBL, induced by anti-CD3 mAb, but that SPV-L14 did not affect the proliferation induced by phytohemagglutinin. These results suggest that the 120- to 130-kDa MW antigen is associated with T-cell proliferation, depending on the mode of activation.  相似文献   

2.
The human T-cell leukemia virus type I (HTLV-I) is capable of chronically infecting various types of T cells and nonlymphoid cells. The effects of chronic infection on the specific functional activities and growth requirements of mature cytotoxic T lymphocytes (CTL) have remained poorly defined. We have, therefore, investigated the results of HTLV-I infection of both CD4+ and CD8+ human CTL clones. HTLV-I infection resulted in the establishment of functional CTL lines which propagated indefinitely in culture many months longer than the uninfected parental clone. The infected cells became independent of the need for antigen (target cell) stimulation as a requirement for proliferation and growth. Like their uninfected counterparts, however, these HTLV-I-infected clones remained strictly dependent on conditioned medium from mitogen-stimulated T lymphocytes for their growth. This growth factor requirement was not fulfilled by recombinant interleukin-2 alone. Furthermore, the infected lines remained functionally identical to their uninfected parental CTL clones in their ability to specifically recognize and lyse the appropriate target cells. Our findings indicate that the major effects of HTLV-I infection on mature CTL consist of (i) the capacity for proliferation in the absence of antigen stimulation and (ii) a prolonged or immortal survival in vitro, but they also indicate that the fine specificity and cytolytic capacity of these cells remain unaffected.  相似文献   

3.
Human T-cell leukemia virus type I (HTLV-I) can infect a variety of human cell types, but only T lymphocytes are efficiently immortalized after HTLV-I infection. This study reports an attempt to infect and to immortalize NK cells with HTLV-I. Co-cultivation of freshly isolated NK cells with a HTLV-I-producing T cell line did not result in NK cell infection. However, NK cells activated with an anti-CD16 mAb and co-cultivated with a HTLV-I-producing T cell line were reproducibly infected by HTLV-I. HTLV-I infection was documented in NK cell lines and clones by the detection of defective integrated provirus by both Southern blot and polymerase chain reaction analysis. Although HTLV-I-infected NK cells produced viral proteins, they did not produce infectious viral particles. HTLV-I-infected NK cells were phenotypically indistinguishable from their uninfected counterparts (CD16+, CD2+, CD56+, CD3-). They also retained the ability to mediate both natural and antibody-dependent cell cytotoxicity. The IL-2-dependent proliferation of HTLV-I-infected NK cells was significantly greater than that of uninfected NK cells. The doubling time of this infected population was reduced from 9 days to 3 days, and the overall survival of the culture in the absence of restimulation was extended from 5 wk to 18 wk. Unlike T lymphocytes, HTLV-I-infected NK cells were not immortal, implying a fundamental difference between these two lymphocyte populations.  相似文献   

4.
5.
K A Schat  C L Chen  B W Calnek    D Char 《Journal of virology》1991,65(3):1408-1413
Marek's disease herpesvirus (MDV)-transformed lymphoblastoid tumor cell lines were characterized for the presence of the surface markers. Monoclonal antibodies were used for CD3 (T-cell receptor [TCR] complex), TCR1, TCR2, and TCR3, CD4, CD8, and Ia antigen by indirect fluorescence staining followed by microscopic examination or flow cytometry. The lymphoblastoid cell lines were obtained from tumors from chickens infected with MDV (n = 44) or from local lesions induced by inoculation of allogeneic, MDV-infected chick kidney cells (n = 56). Lymphocytes were harvested from these lesions between 4 and 16 days postinoculation and cultured in vitro to establish cell lines. All cell lines expressed Ia antigen and CD3 and/or TCR and thus are activated T cells. Most of the cell lines developed from tumors were CD4+ CD8-; only one cell line was negative for both markers. Sixteen percent of the cell lines were TCR3+, while the remainder were TCR2+. The cell lines developed from local lesions were much more heterogeneous: 45% were CD4- CD8+, 34% were CD4- CD8-, and only 21% were CD4+ CD8-. The number of TCR3+ cell lines was larger than expected for the CD4- CD8+ and CD4- CD8- cell lines, as judged from the presence of these cells in the blood. These results indicate that several subsets of T lymphocytes can be transformed by MDV, depending on the pathogenesis of infection. Activation of T cells as a consequence of the normal pathogenesis or by allogeneic stimulation seem to be a first important step in the process of transformation.  相似文献   

6.
The regulation and expression of protein kinase C (PKC) and phosphomyristin C (PMC) (a principal substrate of PKC which is the major myristylated protein in lymphocyte and glioma lines that express it) in murine B and T lymphocytes were investigated. Both PMC and PKC are differentially regulated during T-cell development. The level of PMC expression is highest in CD4-8-, intermediate in CD4+8+, and lowest in J11d-, CD4, or CD8 single-positive thymocytes. PKC is equally expressed by all three thymic populations. In striking contrast to thymocytes, resting peripheral lymph node T cells and T-cell clones express little if any PMC and reduced levels of PKC. Neither PKC nor PMC is significantly induced upon the activation of lymph node T cells: treatment with anti-CD3 antibodies or anti-CD3 and interleukin-2 fails to induce PKC, whereas PMC is not induced by anti-CD3 alone and is only slightly induced by anti-CD3 and interleukin-2. In contrast to the situation with T cells, PMC and PKC are constitutively expressed at moderate levels in mature B cells. PMC is greatly increased in B-cell blasts generated by cross-linking the antigen receptor with anti-immunoglobulin. These results demonstrate that PMC and PKC are differentially regulated during the development and activation of B and T cells, suggesting that cellular events that rely upon PKC and PMC may differ during ontogeny and activation of different lymphocyte subsets.  相似文献   

7.
Unstimulated peripheral blood mononuclear cells from patients with angiocentric T cell immunoproliferative disorders and concanavalin A-stimulated normal peripheral blood mononuclear cells secrete a phagocytosis-inducing factor (PIF) that induces a fivefold to 50-fold enhancement of phagocytosis of IgG-coated ox red blood cells by U937 cells. We investigated the identity, production, and mechanism of the action of PIF. PIF activity was demonstrated in supernatants from nine of 44 phytohemagglutinin-stimulated interleukin 2 (IL 2)-dependent T cell lines and clones derived from purified T4+ cells, but was not found in supernatants from 26 lines and clones derived from phytohemagglutinin-stimulated T8+ cells. In addition, PIF was produced by four of four antigen-specific T cell lines and clones after stimulation with the appropriate antigen and antigen-presenting cells, and by HUT-102, a human T cell lymphotropic virus type I-transformed T cell line. PIF from all of these sources caused significant inhibition of U937 proliferation. This proliferation-inhibiting activity co-purified with phagocytosis-enhancing activity in sizing procedures and isoelectric focusing, which yielded an estimated m.w. of 35,000 to 55,000 and an estimated isoelectric point of 5.0 to 6.0 for PIF. In contrast, IL 2, recombinant interferon-alpha, and recombinant interferon-gamma had no effect on phagocytosis by U937 cells, and antibodies to interferon-alpha and interferon-gamma did not block the phagocytosis-inducing activity of PIF-containing supernatants. PIF appears to be a distinct lymphokine produced by a subset of T4+ lymphocytes, possibly those that proliferate in response to antigen. PIF may be important in the induction of erythrophagocytosis, which is associated with certain T cell immunoproliferative disorders.  相似文献   

8.
The ability of human T cell leukemia/lymphoma virus (HTLV)-I to alter the function of infected T lymphocytes was examined directly by investigating the properties of an antigen-specific T cell clone before and after transformation with HTLV-I. Following infection, the T4 antigen-specific clone manifested a tenfold increase in its surface interleukin 2 (IL 2) receptor (Tac) density and acquired the viral determinants p19, p24, and 4D12 not present in the uninfected clone. Prior to infection, the T cell clone responded to antigen stimulation in the presence of histocompatible antigen-presenting cells with proliferation and secretion of multiple lymphokines, including IL 2, B cell growth factor (BCGF), B cell differentiation factor (BCDF), and interferon-gamma (IFN-gamma). Following infection, the T cell clone both proliferated and produced constitutively three of these lymphokines (BCGF, BCDF, and IFN-gamma) in the absence of accessory cells or antigen. Co-cultivation with any accessory cells regardless of histocompatibility resulted in increased proliferation and lymphokine production. IL 2 production by the HTLV-I-transformed cell, however, could not be detected. Similarly, the uninfected clone was able to provide B cell help for Ig production only when stimulated with both histocompatible cells and antigen. In contrast, the infected cell provided T cell help to B cells in an unregulated manner, independent of antigen or histocompatibility. Thus, functions such as the induction of proliferation, B cell help, and lymphokine production, which are finely regulated in uninfected antigen-specific T cell clones, became indiscriminant after HTLV-I infection.  相似文献   

9.
The levels of c-myc mRNA and interleukin-2 receptors (IL-2 Rec) were studied in human peripheral blood lymphocytes (PBL); mature CD2+,CD3+ T cell clones and CD2+,CD3- natural killer (NK) cell clones, and CD2+,CD3+ and CD2-,CD3- T lymphoma cell lines. A transient induction of the expression of c-myc and IL-2 Rec was observed in PBL after activation with phytohemagglutinin (PHA). Expression of c-myc and IL-2 Rec was also found in the CD2+,CD3+ and CD2+,CD3- clones. The CD2+,CD3+ showed higher levels of c-myc mRNA and IL-2 Rec than the CD2+,CD3- clones. In three T lymphoma cell lines constitutively high levels of c-myc mRNA but no IL-2 Rec were found. Only in JURKAT (CD2+,CD3+), c-myc mRNA levels could be further enhanced by PHA. These results suggest that in the presence of PHA, expression of c-myc and IL-2 Rec is induced via the CD3 receptor, and in the absence of PHA and/or the CD3 receptor alternative routes of induction are involved.  相似文献   

10.
T-cell memory to Epstein-Barr virus (EBV) was first demonstrated through regression of EBV-induced B-cell transformation to lymphoblastoid cell lines (LCLs) in virus-infected peripheral blood mononuclear cell (PBMC) cultures. Here, using donors with virus-specific T-cell memory to well-defined CD4 and CD8 epitopes, we reexamine recent reports that the effector cells mediating regression are EBV latent antigen-specific CD4+ and not, as previously assumed, CD8+ T cells. In regressing cultures, we find that the reversal of CD23+ B-cell proliferation was always coincident with an expansion of latent epitope-specific CD8+, but not CD4+, T cells; furthermore CD8+ T-cell clones derived from regressing cultures were epitope specific and reproduced regression when cocultivated with EBV-infected autologous B cells. In cultures of CD4-depleted PBMCs, there was less efficient expansion of these epitope-specific CD8+ T cells and correspondingly weaker regression. The data are consistent with an effector role for epitope-specific CD8+ T cells in regression and an auxiliary role for CD4+ T cells in expanding the CD8 response. However, we also occasionally observed late regression in CD8-depleted PBMC cultures, though again without any detectable expansion of preexisting epitope-specific CD4+ T-cell memory. CD4+ T-cell clones derived from such cultures were LCL specific in gamma interferon release assays but did not recognize any known EBV latent cycle protein or derived peptide. A subset of these clones was also cytolytic and could block LCL outgrowth. These novel effectors, whose antigen specificity remains to be determined, may also play a role in limiting virus-induced B-cell proliferation in vitro and in vivo.  相似文献   

11.
In this study, we show that CD4+, hepatitis B virus (HBV) envelope-specific T-cell clones produced by stimulation with a particulate antigen preparation are able to recognize and kill not only autologous antigen-presenting cells incubated with exogenous HBV envelope antigens but also autologous HLA class II-positive cells expressing endogenously synthesized HBV envelope antigens following infection with recombinant vaccinia viruses or transfection with recombinant Epstein-Barr virus expression vectors. Experiments with lysosomotropic agents and brefeldin A suggest that the endosomal compartment is likely involved in the processing of endogenously synthesized viral proteins for recognition by CD4+ T cells. Our study indicates that HBV envelope-specific, HLA class II-restricted CD4+ cytotoxic T lymphocytes can potentially participate in the immune clearance of HBV-infected cells and the pathogenesis of hepatocellular injury in hepatitis B.  相似文献   

12.
Most humans carry Epstein-Barr virus (EBV) in circulating memory B cells as a latent infection that is controlled by an immune response. When infected by EBV, B lymphocytes in fetal cord blood are readily transformed to lymphoblastoid cell lines (LCL). It is frequently assumed that this high efficiency of transformation is due to the absence of a primary immune response. However, cord blood lymphocytes stimulated with autologous LCL yield CD4+ T cells that can completely inhibit the growth of LCL by a major histocompatibility complex-restricted cytotoxic mechanism mediated by granulysin and granzyme B. Because EBV-transformed B cells maintain the phenotype of antigen-activated B-cell blasts, they can potentially receive inhibitory or helper functions from CD4+ T cells. To assess these functions, the effect of EBV-specific CD4+ T cells on the efficiency of virus transformation of autologous B cells was assayed. Paradoxically, although the cytotoxic CD4+ T-cell lines reduced EBV B-cell transformation at a high effector/target ratio of 10:1, they caused a twofold increase in B-cell transformation at the lower effector/target ratio of 1:1. Th1-polarized CD4+ T cells were more effective at inhibiting B-cell transformation, but Th2-polarized cell lines had reduced cytotoxic activity, were unable to inhibit LCL growth, and caused a 10-fold increase in transformation efficiency. Tonsil lymphoid follicles lacked NK cells and CD8+ T cells but contained CD4+ T cells. We propose that CD4+ T cells provide helper or cytotoxic functions to EBV-transformed B cells and that the balance of these functions within tonsil compartments is critical in establishing asymptomatic primary EBV infection and maintaining a stable lifelong latent infection.  相似文献   

13.
The CD4 and CD8 molecules are rapidly phosphorylated following exposure of CD4+ or CD8+ human cytotoxic T lymphocytes (CTL) clones to B-lymphoblastoid cell lines bearing the relevant target alloantigens. Treatment of CD4+ or CD8+ CTL clones with phorbol myristate acetate (PMA), phytohemagglutinin, or mitogenic combinations of CD2-specific antibodies also resulted in CD4 or CD8 phosphorylation. Down-regulation of the surface expression of these molecules could be demonstrated in both CD4+ and CD8+ clones following exposure to the relevant alloantigen or PMA. Parallel experiments were conducted using mouse L cells in which the human CD4 or CD8 antigens were stably expressed. Exposure of these transfectants to PMA induced rapid phosphorylation of the CD4 and CD8 molecules. As in CD4+ CTL clones, rapid modulation of the CD4 antigen could be demonstrated in L cells following PMA treatment. In contrast, there was no demonstrable down-regulation of the CD8 antigen in PMA-treated CD8+ L cell transfectants. These studies demonstrate a significant differential property of the CD4 and CD8 antigens and suggest that down-regulation of the CD8 antigen may require its expression in a T-cell environment and/or the association of CD8 with the T-cell receptor or other T cell-specific molecules.  相似文献   

14.
15.
16.
Polyclonal Epstein-Barr virus (EBV)-infected B cell line (lymphoblastoid cell lines; LCL)-stimulated T-cell preparations have been successfully used to treat EBV-positive post-transplant lymphoproliferative disorders (PTLD) in transplant recipients, but function and specificity of the CD4+ component are still poorly defined. Here, we assessed the tumor-protective potential of different CD4+ T-cell specificities in a PTLD-SCID mouse model. Injection of different virus-specific CD4+ T-cell clones showed that single specificities were capable of prolonging mouse survival and that the degree of tumor protection directly correlated with recognition of target cells in vitro. Surprisingly, some CD4+ T-cell clones promoted tumor development, suggesting that besides antigen recognition, still elusive functional differences exist among virus-specific T cells. Of several EBV-specific CD4+ T-cell clones tested, those directed against virion antigens proved most tumor-protective. However, enriching these specificities in LCL-stimulated preparations conferred no additional survival benefit. Instead, CD4+ T cells specific for unknown, probably self-antigens were identified as principal antitumoral effectors in LCL-stimulated T-cell lines. These results indicate that virion and still unidentified cellular antigens are crucial targets of the CD4+ T-cell response in this preclinical PTLD-model and that enriching the corresponding T-cell specificities in therapeutic preparations may enhance their clinical efficacy. Moreover, the expression in several EBV-negative B-cell lymphoma cell lines implies that these putative autoantigen(s) might also qualify as targets for T-cell-based immunotherapy of virus-negative B cell malignancies.  相似文献   

17.
Xie L  Green PL 《Journal of virology》2005,79(23):14536-14545
Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are related deltaretroviruses but are distinct in their disease-inducing capacity. These viruses can infect a variety of cell types, but only T lymphocytes become transformed, which is defined in vitro as showing indefinite interleukin-2-independent growth. Studies have indicated that HTLV-1 has a preferential tropism for CD4+ T cells in vivo and is associated with the development of leukemia and neurological disease. Conversely, the in vivo T-cell tropism of HTLV-2 is less clear, although it appears that CD8+ T cells preferentially harbor the provirus, with only a few cases of disease association. The difference in T-cell transformation tropism has been confirmed in vitro as shown by the preferential transformation of CD4+ T cells by HTLV-1 versus the transformation of CD8+ T cells by HTLV-2. Our previous studies showed that Tax and overlapping Rex do not confer the distinct T-cell transformation tropisms between HTLV-1 and HTLV-2. Therefore, for this study HTLV-1 and HTLV-2 recombinants were generated to assess the contribution of LTR and env sequences in T-cell transformation tropism. Both sets of proviral recombinants expressed p19 Gag following transfection into cells. Furthermore, recombinant viruses were replication competent and had the capacity to transform T lymphocytes. Our data showed that exchange of the env gene resulted in altered T-cell transformation tropism compared to wild-type virus, while exchange of long terminal repeat sequences had no significant effect. HTLV-2/Env1 preferentially transformed CD4+ T cells similarly to wild-type HTLV-1 (wtHTLV-1), whereas HTLV-1/Env2 had a transformation tropism similar to that of wtHTLV-2 (CD8+ T cells). These results indicate that env is a major viral determinant for HTLV T-cell transformation tropism in vitro and provides strong evidence implicating its contribution to the distinct pathogenesis resulting from HTLV-1 versus HTLV-2 infections.  相似文献   

18.
Gammadelta T cells are present in the mucosal intestinal epithelia and secrete factors necessary to maintain tissue integrity. Ags recognized by these cells are poorly defined, although in mice non-classical MHC class I molecules have been implicated. Since MHC class I-like CD1 receptors are widely expressed at the surface of epithelial and dendritic intestinal cells and have the capacity to present lipid Ags to T cells, we hypothesized that these molecules might present autologous and/or exogenous phospholipids to intestinal gammadelta T lymphocytes. Intraepithelial T lymphocytes from normal human duodenal mucosal biopsies were cloned and exposed to natural and synthetic phospholipids using CD1a-, CD1b-, CD1c- or CD1d-transfected C1R lymphoblastoid or HeLa cell lines as APCs. Their cytolytic properties and regulatory cytokine secretion were also examined. Most clones obtained from duodenal mucosa (up to 70%) were TCRalphabeta+, and either CD4+ or CD8+, whereas 20% were CD4-CD8- (6 clones) or TCRgammadelta+ (12 clones). A relevant percentage (up to 66%) of TCRgammadelta+ but few (<5%) TCRalphabeta+ T cell clones responded to synthetic and/or natural phospholipids presented by CD1 molecules, as measured by both [(3)H]thymidine incorporation and IL-4 release assays. A Th1-like cytolytic and functional activity along with the ability to secrete regulatory cytokines was observed in most phospholipid-specific gammadelta T cell clones. Thus, a substantial percentage of TCRgammadelta+ but few TCRalphabeta+ from human duodenal mucosa recognize exogenous phospholipids in a CD1-restricted fashion. This adaptive response could contribute to mucosal homeostasis, but could also favor the emergence of inflammatory or allergic intestinal diseases.  相似文献   

19.
Ag-presenting cells provide at least two distinct signals for T cell activation. T cell receptor-dependent stimulation is provided by presentation of a specific peptide Ag in association with MHC molecules. In addition, APC also supply costimulatory signals required for T cell activation that are neither Ag- nor MHC restricted. One such costimulatory signal is mediated via the interaction of B7 on APC with the CD28 receptor on T cells. Recently, CTLA-4 has been shown to be a second B7 receptor on T cells. In the present report, we have examined the expression of CD28 and CTLA-4 on a panel of resting and activated normal T cell subsets and T cell clones by RNA blot analysis in an attempt to determine whether their expression defines reciprocal or overlapping subsets. CD28 was detected in resting T cells, whereas CTLA-4 was not. After stimulation with PHA and PMA for 24 h, CTLA-4 mRNA was expressed in both the CD4+ and CD8+ subsets as well as in CD28+ T cells. We examined 37 human and six murine T cell clones that had been previously characterized for their cytokine production. After activation, CTLA-4 and CD28 mRNA were coexpressed in 36 of 37 human T cell clones and all six murine T cell clones. These included T cells of CD4+8-, CD4-8+, and CD4-8- phenotypes as well as clones with Th1 and Th2 cytokine profiles. In contrast, CD28 but not CTLA-4 mRNA was detected in leukemic T cell lines and myelomas. CTLA-4 and B7 mRNA but not CD28 mRNA was detected in two long term HTLV-I-transformed T cell lines. These data demonstrate that CD28 and CTLA-4 mRNA are coexpressed in most activated T cells and T cell clones, providing evidence that they do not define reciprocal subsets. Moreover, they are consistent with the hypothesis that B7 transmits its signal through a single receptor, CD28, on resting T cells, and multiple receptors, CD28 and CTLA-4, on activated T cells.  相似文献   

20.
Overcoming hepatitis B virus infection essentially depends on the appropriate immune response of the infected host. Among the hepatitis B virus antigens, the core (HBcAg) and e (HBeAg) proteins appear highly immunogenic and induce important lymphocyte effector functions. In order to investigate the importance of HBcAg/HBeAg-specific T lymphocytes in patients with acute and chronic hepatitis B and to identify immunodominant epitopes within the HBcAg/HBeAg, CD4+ T-cell responses to hepatitis B virus-encoded HBcAg and HBcAg/HBeAg-derived peptides were studied in 49 patients with acute and 39 patients with chronic hepatitis B. The results show a frequent antigen-specific CD4+ T-cell activation during acute hepatitis B infection, a rare HBcAg/HBeAg-specific CD4+ T-cell response among HBeAg+ chronic carriers, and no response in patients with anti-HBe+ chronic hepatitis. An increasing CD4+ T-cell response to HBcAg/HBeAg coincides with loss of HBeAg and hepatitis B virus surface antigen (HBsAg). Functional analysis of peptide-specific CD4+ T-cell clones revealed a heterogeneous population with respect to lymphokine production. Epitope mapping within the HBcAg/HBeAg peptide defined amino acids (aa) 1 to 25 and aa 61 to 85, irrespective of the HLA haplotype, as the predominant CD4+ T-cell recognition sites. Other important sequences could be identified in the amino-terminal part of the protein, aa 21 to 45, aa 41 to 65, and aa 81 to 105. The immunodominant epitopes are expressed in both proteins, HBcAg and HBeAg. Our findings lead to the conclusion that activation of CD4+ T lymphocytes by HBcAg/HBeAg is a prerequisite for viral elimination, and further studies have to focus on the question of how to enhance or induce this type of T-cell response in chronic carriers. The immunodominant viral sequences identified may have relevance to synthetic vaccine design and to the use of peptide T-cell sites as immunotherapeutic agents in chronic infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号