首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We previously encountered regulatory processes wherein dihydrotestosterone (DHT) exerted its inhibitory effect on parathyroid hormone‐related protein (PTHrP) gene repression through the estrogen receptor (ER)α, but not the androgen receptor (AR), in breast cancer MCF‐7 cells. Here, we investigated whether such aberrant ligand‐nuclear receptor (NR) interaction is present in prostate cancer LNCaP cells. First, we confirmed that LNCaP cells expressed large amounts of AR at negligible levels of ERα/β or progesterone receptor. Both suppression of PTHrP and activation of prostate‐specific antigen genes were observed after independent administration of 17β‐estradiol (E2), DHT, or R5020. Consistent with the notion that the LNCaP AR lost its ligand specificity due to a mutation (Thr‐Ala877), experiments with siRNA targeting the respective NR revealed that the AR monopolized the role of the mediator of shared hormone‐dependent regulation, which was invariably associated with nuclear translocation of this mutant AR. Microarray analysis of gene regulation by DHT, E2, or R5020 disclosed that more than half of the genes downstream of the AR (Thr‐Ala877) overlapped in the LNCaP cells. Of particular interest, we realized that the AR (wild‐type [wt]) and AR (Thr‐Ala877) were equally responsible for the E2‐AR interactions. Fluorescence microscopy experiments demonstrated that both EGFP‐AR (wt) and EGFP‐AR (Thr‐Ala877) were exclusively localized within the nucleus after E2 or DHT treatment. Furthermore, reporter assays revealed that some other cancer cells exhibited aberrant E2‐AR (wt) signaling similar to that in the LNCaP cells. We herein postulate the presence of entangled interactions between wt AR and E2 in certain hormone‐sensitive cancer cells. J. Cell. Physiol. 230: 1594–1606, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

5.
The androgen receptor (AR) is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR) at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT) stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec) cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase) thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Androgen receptor (AR) signaling is the master regulator of prostate cell growth. Here, to better understand AR signaling, we searched for AR-interacting proteins by yeast two-hybrid screening and identified protein arginine methyltransferase 10 (PRMT10) as one of the interacting proteins. PRMT10 was highly expressed in reproductive tissues, such as prostate. Immunostaining showed that PRMT10 was expressed in the nucleus of both epithelia and stroma of rat prostate. In human prostate cancer LNCaP cells, PRMT10 co-immunoprecipitated with AR in both the presence and absence of dihydrotestosterone (DHT). Knockdown of PRMT10 by siRNA decreased DHT-dependent LNCaP cell growth and induction of prostate-specific antigen, an AR-target gene, without apparent loss of AR. DHT decreased PRMT10 at both the mRNA and protein levels. The decrease in PRMT10 was canceled by knockdown of AR or an AR antagonist. These results indicate that PRMT10 plays an important role in androgen-dependent proliferation of prostate cancer cells.  相似文献   

15.
16.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon receptor (AhR) ligands suppress 17beta-estradiol (E)-induced responses in the rodent uterus and mammary tumors and in human breast cancer cells. Treatment of ZR-75, T47D, and MCF-7 human breast cancer cells with TCDD induces proteasome-dependent degradation of endogenous estrogen receptor alpha (ERalpha). The proteasome inhibitors MG132, PSI, and PSII inhibit the proteasome-dependent effects induced by TCDD, whereas the protease inhibitors EST, calpain inhibitor II, and chloroquine do not affect this response. ERalpha levels in the mouse uterus and breast cancer cells were significantly lower after cotreatment with E plus TCDD than after treatment with E or TCDD alone, and our results indicate that AhR-mediated inhibition of E-induced transactivation is mainly due to limiting levels of ERalpha in cells cotreated with E plus TCDD. TCDD alone or in combination with E increases formation of ubiquitinated forms of ERalpha, and both coimmunoprecipitation and mammalian two-hybrid assays demonstrate that TCDD induces interaction of the AhR with ERalpha in the presence or absence of E. In contrast, E does not induce AhR-ERalpha interactions. Thus, inhibitory AhR-ERalpha cross talk is linked to a novel pathway for degradation of ERalpha in which TCDD initially induces formation of a nuclear AhR complex which coordinately recruits ERalpha and the proteasome complex, resulting in degradation of both receptors.  相似文献   

17.
The androgen receptor (AR) surface-directed antagonist MJC13 inhibits AR function and proliferation of prostate cancer (PC) cells. These effects are related to arrest of an AR/chaperone complex in the cytoplasm. Here, we compared MJC13 and classic AR antagonists such as flutamide and bicalutamide. Microarray analysis and confirmatory qRT-PCR reveals that MJC13 and flutamide inhibit dihydrotestosterone (DHT)-dependent genes in LNCaP PC cells. Both compounds are equally effective on a genome wide basis and as effective as second generation AR antagonists (MDV3100, ARN-509) at selected genes. MJC13 inhibits AR binding to the prostate specific antigen (PSA) promoter more strongly than flutamide, consistent with different mechanisms of action. Examination of efficacy of MJC13 in conditions that reflect aspects castrate resistant prostate cancer (CRPC) reveals that it inhibits flutamide activation of an AR mutant (ART877A) that emerges during flutamide withdrawal syndrome, but displays greatly restricted gene-specific activity in 22Rv1 cells that express a constitutively active truncated AR and is inactive against glucocorticoid receptor (GR), which can co-opt androgen-dependent signaling networks in CRPC. Importantly, MJC13 inhibits AR interactions with SRC2 and β-catenin in the nucleus and, unlike flutamide, strongly inhibits amplification of AR activity obtained with transfected SRC2 and β-catenin. MJC13 also inhibits DHT and β-catenin-enhanced cell division in LNCaP cells. Thus, a surface-directed antagonist can block AR activity in some conditions in which a classic antagonist fails and may display utility in particular forms of CRPC.  相似文献   

18.
Chen I  Hsieh T  Thomas T  Safe S 《Gene》2001,262(1-2):207-214
Aryl hydrocarbon receptor (AhR) agonists inhibit 17beta-estradiol (E2) induced growth of MCF-7 human breast cancer cells in vitro and rodent mammary tumor growth in vivo. Genes associated with inhibitory AhR-estrogen receptor (ER) crosstalk were investigated in MCF-7 human breast cancer cells using poly(A)(+)RNA from cells treated with either 1 nM E2 (target) or E2 plus 1 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (reference) or 25 microM diindolylmethane (DIM) as AhR agonists in MCF-7 cells. Suppression subtractive hybridization (SSH) was subsequently used to identify 33 genes with sequence homology to known human genes that are induced by E2 and inhibited by AhR agonists in MCF-7 cells; two unknown genes were also identified. Many of these genes are involved in cell proliferation and these include cell cycle regulators (cdc28/cdc2-associated protein), nucleotide synthases (thymidylate synthase), early intermediate genes (early growth response alpha, EGRalpha) and other proteins involved in signaling pathways (calmodulin, ATP synthase alpha subunit). Thus SSH has identified a diverse spectrum of new genes that are affected by inhibitory AhR-ER crosstalk and among this group are a subset of genes that may be critical for the in vivo antitumorigenic effects of AhR agonists.  相似文献   

19.
Androgen receptor (AR)-associated coregulator 70 (ARA70) was the first identified AR coregulator. However, its molecular mechanism and biological relevance to prostate cancer remain unclear. Here we show that ARA70 interacts with and promotes AR activity via the consensus FXXLF motif within the ARA70-N2 domain (amino acids 176-401). However, it does not promote AR activity via the classic LXXLL motif located at amino acids 92-96, although this classic LXXLL motif is important for ARA70 to interact with other receptors, such as PPARgamma. The molecular mechanisms by which ARA70 enhances AR transactivation involve the increase of AR expression, protein stability, and nuclear translocation. Furthermore, ARA70 protein is more frequently detected in prostate cancer specimens (91.74%) than in benign tissues (64.64%, p < 0.0001). ARA70 expression is also increased in high-grade prostate cancer tissues as well as the hormone-refractory LNCaP xenografts and prostate cancer cell lines. Because ARA70 can promote the antiandrogen hydroxyflutamide (HF)-enhanced AR transactivation, the increased ARA70 expression in hormone-refractory prostate tumors may confer the development of HF withdrawal syndrome, commonly diagnosed in patients with the later stages of prostate cancer. Because ARA70-N2 containing the AR-interacting FXXLF motif without coactivation function can suppress HF-enhanced AR transactivation in the hormone-refractory LNCaP cells, using the ARA70-N2 inhibitory peptide at the hormone refractory stage to battle the HF withdrawal syndrome may become an alternative strategy to treat prostate cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号