首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used immunocytofluorescence techniques to determine the subcellular distribution of the Ca2+, phospholipid-dependent protein kinase, protein kinase C (PKC). Using monoclonal antibodies that are specific for Type 3 (alpha) PKC, we have determined that there are least two pools of PKC in normal rat embryo fibroblasts (REF52 cells): diffuse cytoplasmic and fiber-associated. Extraction with chelators and detergent before fixing and staining removes the cytoplasmic PKC. The fiber-associated staining remains in these cytoskeleton preparations. The cytoskeleton Type 3 PKC staining closely resembles that of the focal contact protein vinculin and colocalizes with another focal contact protein, talin. Cytochalasin, but not colchicine, coordinately disrupts the staining pattern of vinculin and PKC. Activation of PKC by treatment with phorbol esters causes depolymerization of microfilaments and reorganization of vinculin staining. We propose that Type 3 PKC is a modulatory component of the focal contact and has a primary role in regulation of the association of microfilament bundles with the plasma membrane.  相似文献   

2.
Ubiquitin is a heat shock protein in chicken embryo fibroblasts.   总被引:61,自引:10,他引:51       下载免费PDF全文
Clones containing heat-inducible mRNA sequences were selected from a cDNA library prepared from polyadenylated RNA isolated from heat-shocked chicken embryo fibroblasts. One recombinant DNA clone, designated clone 7, hybridized to a 1.2-kilobase RNA that was present in normal cells and increased fivefold during heat shock. Clone 7 also hybridized to an RNA species of 1.7 kilobases that was present exclusively in heat-shocked cells. In vitro translation of mRNA hybrid selected from clone 7 produced a protein product with a molecular weight of approximately 8,000. Increased synthesis of a protein of similar size was detected in chicken embryo fibroblasts after heat shock. DNA sequence analysis of clone 7 indicated its protein product has amino acid sequences identical to bovine ubiquitin. In addition, clone 7 contains tandem copies of the ubiquitin sequences contiguous to each other with no untranslated sequences between them. We discuss some possible roles for ubiquitin in the heat shock response.  相似文献   

3.
Heat shock proteins of chick embryo fibroblasts were analyzed on SDS polyacrylamide gradient gels and were found to include not only three previously well-characterized proteins of 25,000, 73,000, and 89,000 D, but also a 47,000-D protein. Two-dimensional gel electrophoresis revealed that this protein was unusually basic (pI = 9.0) and corresponded to a recently characterized, major gelatin- and collagen-binding protein. The induction of synthesis of this 47,000-D membrane glycoprotein after heat stress of fibroblasts was particularly apparent in preparations isolated by gelatin-affinity chromatography. Regulation of this 47,000-D phosphoprotein was more sensitive than that of three major heat shock proteins in that a substantial stimulation of synthesis occurred at even 42 degrees C, as well as at higher temperature. Phosphorylation of the 47,000-D protein was not altered after heat shock. These studies establish this phosphorylated membrane glycoprotein as a member of the heat shock/stress protein family, and they add collagen binding to the unexpectedly diverse spectrum of biochemical activities induced by exposure of cells to stress.  相似文献   

4.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

5.
Previous studies have suggested that protein kinase C (PKC) is involved in heat shock protein (Hsp)-mediated cardioprotection. Therefore, we wanted to determine whether overexpression of Hsps modulates PKC expression, which will give us further insight into understanding the mechanism by which Hsps and PKC interact to protect cells from stress-induced injury. Specifically, we overexpressed the inducible form of Hsp70 (Hsp70i) or Hsp90 in rat neonatal cardiomyocytes and evaluated PKCdelta or PKCepsilon expression by immunoblotting and immunofluorescent confocal microscopy. Western analysis showed that overexpression of Hsp70i or Hsp90 decreased PKCepsilon expression. However, overexpression of Hsp70i or Hsp90 did not modify PKCdelta expression over control levels. Overexpression of constitutively active PKCdelta or PKCepsilon increased Hsp70i expression over control levels. The data suggest that overexpression of Hsps differentially modulates expression of PKC isoforms in rat neonatal cardiomyocytes. Furthermore, PKC may directly play a role in Hsp-mediated cardioprotection by upregulating Hsp70i expression.  相似文献   

6.
7.
8.
9.
The dynamic state of heat shock proteins in chicken embryo fibroblasts   总被引:15,自引:7,他引:15       下载免费PDF全文
Subcellular fractionation and immunofluorescence microscopy have been used to study the intracellular distributions of the major heat shock proteins, hsp 89, hsp 70, and hsp 24, in chicken embryo fibroblasts stressed by heat shock, allowed to recover and then restressed. Hsp 89 was localized primarily to the cytoplasm except during the restress when a portion of this protein concentrated in the nuclear region. Under all conditions, hsp 89 was readily extracted from cells by detergent. During stress and restress, significant amounts of hsp 70 moved to the nucleus and became resistant to detergent extraction. Some of this hsp 70 was released from the insoluble form in an ATP-dependent reaction. Hsp 24 was confined to the cytoplasm and, during restress, aggregated to detergent-insoluble perinuclear phase-dense granules. These granules dissociated during recovery and hsp 24 could be solubilized by detergent. The nuclear hsps reappeared in the cytoplasm in cells allowed to recover at normal temperatures. Sodium arsenite also induces hsps and their distributions were similar to that observed after a heat shock, except for hsp 89, which remained cytoplasmic. We also examined by immunofluorescence the cytoskeletal systems of chicken embryo fibroblasts subjected to heat shock and found no gross morphological changes in cytoplasmic microfilaments or microtubules. However, the intermediate filament network was very sensitive and collapsed around the nucleus very shortly after a heat shock. The normal intermediate filament morphology reformed when cells were allowed to recover from the stress. Inclusion of actinomycin D during the heat shock--a condition that prevents synthesis of the hsps--did not affect the intermediate filament collapse, but recovery of the normal morphology did not occur. We suggest that an hsp(s) may aid in the formation of the intermediate filament network after stress.  相似文献   

10.
The E1A gene of adenovirus type 5 (Ad5) induces morphological transformation and anchorage-independent growth in cloned rat embryo fibroblast (CREF) cells. In contrast, CREF cells transfected with a beta 1 protein kinase C (PKC) gene and expressing low-levels of beta 1 PKC display a CREF-like morphology and do not form colonies when grown in agar. The combination of Ad5 E1A and low-level beta 1 PKC expression in the same CREF cell line results in an enhanced ability to grow when suspended in agar. In Ad5 E1A and Ad5 E1A + low-level beta 1 PKC expressing CREF clones, the tumor promoting agent 12-0-tetradecanoyl-phorbol-13-acetate (TPA) further enhances anchorage-independence. In contrast, TPA does not induce CREF cells or transfected CREF cells expressing low-levels of beta 1 PKC to grow in agar. Low-level beta 1 PKC expression in transfected CREF cells is associated with a modest 1.2 to 1.6-fold increase in binding of [3H]-phorbol-12,13-dibutyrate (PDBu) and only a 2.3-fold increase in PKC enzymatic activity. In contrast, specific beta 1 PKC-retroviral vector transformed CREF clones (CREF-RV-PKC) display higher levels of PKC mRNA, PDBu binding and PKC enzymatic activity. A majority of CREF-RV-PKC clones exhibit a transformed morphology and grow more rapidly in monolayer culture, form macroscopic colonies in agar in the absence of TPA and in many independent clones TPA further enhances anchorage-independent growth. This effect is not directly related to the level of enhanced [3H]-PDBu binding. The present study indicates that the effect of beta 1 PKC on cellular phenotype in immortal rat embryo cells is complex and is affected by its mode of insertion into CREF cells, i.e. transfection versus retroviral insertion. In addition, the combination of a transfected Ad5 E1A and a beta 1 PKC gene in the same CREF clone results in an enhanced expression of the transformed phenotype in both the absence and presence of TPA.  相似文献   

11.
Utilizing video-enhanced differential interference contrast microscopy of chicken embryo fibroblasts, we observed dramatic changes in the localization and morphology of mitochondria shortly after cells were subjected to a mild heat shock. At normal temperatures mitochondria were distributed in the cell cytoplasm as elongated, tubular, and dynamic organelles but upon heat shock they moved to the perinuclear region and formed a tight ring of short swollen and—in some cases—fused vesicles. Vital dye staining of mitochondria with rhodamine 123 and indirect immunofluorescence staining with antibodies against the mitochondrial-matrix protein, HSP 60, confirmed these results. Using cells double labeled with antibodies to vimentin and the HSP 60 protein, we found that the changes in mitochondria were accompanied by perturbations of the intermediate filament network that we and others have reported previously for heat shocked cells. Microtubules remained largely unaltered by our heat shock treatment and the redistribution of intermediate filaments and mitochondria occurred even in the presence of taxol, a microtubule stabilizing drug. The effects of heat shock on mitochondria were reversed when cells were returned to normal temperatures and their recovery to their normal state coincided with return of normal intermediate filament morphology. This recovery was blocked in cells treated with actinomycin D during heat shock, a result indicating that a heat shock protein may be required for recovery. These data are consistent with previously published observations that mitochondria are associated with the intermediate filament network but they extend this interaction to a cell system responding to a physiological stress normally experienced by the intact organism.  相似文献   

12.
Rat embryonic fibroblasts growing exponentially at either 35, 37, or 39 degrees C were exposed to 42 degrees C for times up to 6 hr. Cell survival was unaffected by this heat shock in cultures growing at 39 degrees C but survival was decreased in a temperature dependent manner in cells growing at 37 or 35 degrees C. Exposure to 42 degrees C of cells previously adapted to 35 or 37 degrees C resulted in the induction of heat shock proteins (hsps) with apparent molecular weights of 68,000 (hsp 68), 70,000 (hsp 70), and 89,000 (hsp 89); cells previously adapted to 39 degrees C expressed all hsps except hsp 68. Inasmuch as the synthesis of certain hsps may function to protect cells from thermal damage, these data indicate that hsp 68 may not be required for this adaptation-related thermotolerant survival response. Hsp 68 may only be expressed in cells destined to die.  相似文献   

13.
14.
Induced thermotolerance in murine embryos occurs at the 8-cell stage when embryos are maintained in vitro but not until the blastocyst stage if development proceeds in vivo. Present results indicate that ability of embryos to undergo induced thermotolerance is not limited by heat shock protein 70 (HSP70) synthesis. Exposure of 8-cell embryos to 40 degrees C enhanced synthesis of 2 constitutive HSP70 proteins (HSC70 and HSC72) and induced another protein, HSP68; exposure of 43 degrees C was required to induce similar responses in expanded blastocysts. Unlike induced thermotolerance, increased synthesis of HSP70 molecules did not depend on whether embryos were cultured or developed in vivo. Thus, other biochemical mechanisms in addition to HSP70 confer thermotolerance in the preimplantation-stage murine embryo. The observation that the temperature threshold for induction of HSP70 synthesis increased from the 8-cell to the blastocyst stage is indicative of these other biochemical processes.  相似文献   

15.
Protein kinase C (PKC) is involved in signaling that modulates the proliferation and differentiation of many cell types, including mammary epithelial cells. In addition, changes in PKC expression or activity have been observed during mammary carcinogenesis. In order to examine the involvement of specific PKC isoforms during normal mammary gland development, the expression and localization of PKCs alpha, delta, epsilon and zeta were examined during puberty, pregnancy, lactation, and involution. By immunoblot analysis, expression of PKC alpha, delta, epsilon and zeta proteins was increased in mammary epithelial organoids during the transition from puberty to pregnancy. In mammary gland frozen sections, PKCs alpha, delta, epsilon and zeta were stained in the luminal epithelium and myoepithelium, in varying isoform-and developmental stage-specific locations. PKC alpha was found in a punctate apical localization in the luminal epithelium during pregnancy. During lactation, PKC epsilon was present in the nucleus, and PKC zeta was concentrated in the subapical region of the luminal epithelium. Additionally, marked staining for PKCs alpha, delta, epsilon, and zeta was observed in the myoepithelial cells at the base of ducts and alveoli. This basal ductal and alveolar staining differed in intensity in a developmentally-specific fashion. During most time points (virgin, pregnant, lactating, and early involution), myoepithelial cells of the duct were more intensely stained than those lining the alveoli for PKCs alpha, delta, epsilon and zeta. During late involution (days 9-12), the preferential staining of ducts was lost or reversed, and the myoepithelial cells lining the regressing alveolar structures stained equally (PKCs epsilon and zeta) or more intensely (PKCs alpha and delta), coincident with the thickening of the myoepithelial cells surrounding the regressing alveoli. The increased PKC isoform staining at the base of alveoli during involution suggests that alveolar regression may be influenced by alterations in signaling in the alveolar myoepithelium.  相似文献   

16.
Linoleic acid, an unsaturated-long chain fatty acid, was found to maximally activate protein kinase C (PKC) more effectively than arachidonic or linolenic acid, while the saturated fatty acids palmitic or arachidic had no stimulatory effect. Treatment of intact pancreatic acinar cells with linoleic acid resulted in dose-dependent phosphorylation of endogenous substrate proteins for this kinase and simultaneously stimulated amylase secretion in a dose- and time-dependent fashion. During chromatographic separation of pancreas protein kinase C activity, utilizing hydroxylapatite (HTP), Type III-alpha PKC isoform was detected. These data are consistent with a role for PKC in the regulation of pancreatic exocrine secretion.  相似文献   

17.
18.
19.
Monoclonal antibodies (8/1, 10/10, and 25/3) against rat brain type II protein kinase C were used for the immunochemical characterization of this kinase. These antibodies immunoprecipitated the type II protein kinase C in a dose-dependent manner but did neither to the type I nor III isozyme. Immunoblot analysis of the tryptic fragments from protein kinase C revealed that all three antibodies recognized the 27-38-kDa fragments, the phospholipid/phorbol ester-binding domain, but not the 45-48-kDa fragments, the kinase catalytic domain. The immune complexes of the kinase and the antibodies retained 70-80% of the kinase activity which was dependent on Ca2+ and phosphatidylserine and further activated by diacylglycerol or tumor-promoting phorbol ester. With antibody 8/1, the kinetic parameters with respect to Km for ATP and histone and K alpha for phosphatidylserine and phorbol 12,13-dibutyrate were not significantly influenced. However, the antibody causes variable effects on the K alpha for Ca2+ under different assay conditions. When determined in the presence of phosphatidylserine, the K alpha for Ca2+ was reduced by an order of magnitude (37 +/- 8 to 2.0 +/- 1.8 microM); in the presence of phosphatidylserine and phorbol 12,13-dibutyrate, the K alpha for Ca2+ was not significantly altered; and in the presence of phosphatidylserine and dioleoylglycerol, the kinase became an apparently Ca2+-independent enzyme. The effects of antibody 8/1 on the kinetic parameters of the enzyme for phorbol ester binding were different from those for kinase activity. This antibody causes a 20-30% reduction in phorbol ester binding and a 2-fold increase (1.9 +/- 0.2 to 3.9 +/- 0.3 micrograms/ml) in the concentration of phosphatidylserine required for half-maximal binding, but is without significant influence on those parameters for Ca2+ and phorbol 12,13-dibutyrate. The differential effects of antibody 8/1 on kinase activity and phorbol ester binding with respect to the kinetic parameter of phosphatidylserine suggest that the roles of this phospholipid in supporting phorbol ester binding and kinase activation are different. In the presence of the antibody, the autophosphorylations of the phospholipid/phorbol ester-binding domain and the kinase domain were reduced; the reduction was more pronounced for the former than for the latter. These results suggest that the epitope for antibody 8/1 is localized within the phospholipid/phorbol ester-binding domain at the region adjacent to the kinase domain so that the autophosphorylations of both domains are affected.  相似文献   

20.
Vascular complications associated with diabetes mellitus (DM) have been linked to activation of PKC-dependent signaling pathways in both human and animal models of DM. To determine whether aberrant PKC signaling mechanisms specifically impact the coronary circulation, we assessed isolated coronary artery (CA) responses after the induction of Type 1 DM. Male Sprague-Dawley rats were subjected to partial pancreatectomy (DM; n = 23) and compared with age-matched controls (CTL; n = 19). Vasoreactivity was assessed in single CAs ( approximately 250 microm internal diameter) after abluminal administration of the Gq-dependent vasoconstrictors endothelin (ET)-1 (10(-10)-10(-9) M) and U-44619 (10(-9)-10(-5) M) or the voltage-gated Ca2+ channel agonist BAY K 8644 (10(-9)-10(-5) M) with and without the PKC inhibitor bisindolylmaleimide (Bis; 10(-6) M). Dilator responses to ACh (10(-9)-10(-5) M) were also assessed. ET-1 resulted in significantly greater constriction in the DM versus CTL group (50 +/- 4% vs. 33 +/- 5%, P < 0.0001), whereas responses to U-44619 and BAY K 8644 were similar between groups. Importantly, inhibition of ET-1 and U-44619 constriction by Bis occurred in the DM but not CTL group (P < 0.05). Western blotting on isolated CAs revealed greater levels of PKC-alpha, PKC-beta I, and PKC-beta II by 22%, 15.3%, and 17.6%, respectively, in the DM versus CTL group (P < 0.05), whereas PKC-delta and PKC-epsilon protein levels were unchanged. DM was also associated with attenuated CA dilation after ACh treatment (P < 0.0566) and reductions in endothelial nitric oxide synthase protein levels versus CTL (P < 0.03). These data suggest that Ca2+-dependent PKC signaling pathways, particularly for ET-1, play a greater role in modulating CA vasoconstrictor responses in DM versus CTL. These data further suggest that aberrant CA constrictor and dilator responses are likely to contribute to the coronary vascular pathology associated with DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号