首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
When Vero cells with surface-bound 125I-labeled, nicked diphtheria toxin were exposed to pH 4.5, two polypeptides of Mr 20,000 and 25,000 became protected against externally applied Pronase E. The 20-kDa polypeptide appears to be the toxin A-fragment, whereas the 25-kDa polypeptide must be derived from the B-fragment. Permeabilization of the cells with saponin allowed efflux of the 20-kDa fragment to occur, whereas most of the 25-kDa polypeptide remained associated with the cells. A number of compounds and conditions which protect cells against diphtheria toxin prevented the protection against Pronase E. Protection of the 25-kDa polypeptide occurred even when the transmembrane proton gradient (delta pH) was dissipated by acidification of the cytosol, whereas protection and release of the A-fragment were prevented under these conditions. Electrical depolarization and ATP depletion of the cells did not inhibit protection and release of the A-fragment. The data indicate that delta pH is required for the transfer of the A-fragment to the cytosol, whereas the insertion of part of the B-fragment into the membrane occurs at low pH, even in the absence of a delta pH.  相似文献   

2.
The B-fragment of diphtheria toxin binds to cell surface receptors and facilitates entry of the enzymatically active A-fragment into the cytosol. The roles of the amino- and carboxyl-terminal regions of the B-fragment in interactions with the cell membrane were studied by measuring specific binding, insertion into membranes at low pH, and formation of cation-selective channels, as well as by toxicity measurements after association with active A-fragment. Deletion of the amino-terminal 12 amino acids of the B-fragment did not affect its ability to bind to receptors and to form ion channels at low pH, whereas both abilities were strongly impaired when one more amino acid (Trp206) was removed. Replacement of the amino-terminal 31 residues with an amphipathic sequence from human apolipoprotein A1 restored receptor binding but not ion channel formation. The binding to cells was virtually abolished when 9 residues were deleted from the carboxyl terminus. Deletion of only 4 residues or extension by 12 residues did not prevent specific binding, but reduced insertion, channel formation, and toxicity. Those deletions that reduced receptor binding ability increased the trypsin sensitivity of the B-fragment. The results indicate that the amino- and carboxyl-terminal regions of diphtheria toxin B-fragment are important for receptor binding, possibly because they contribute to keep the B-fragment in a binding-competent conformation. Small alterations in the carboxyl-terminal end reduced insertion, channel formation, and toxicity more than the ability of the B-fragment to bind to cells.  相似文献   

3.
Entry of prebound diphtheria toxin at low pH occurred rapidly in the presence of isotonic NaCl, NaBr, NaSCN, NaI, and NaNO3, but not in the presence of Na2SO4, 2-(N-morpholino)ethanesulfonic acid neutralized with Tris, or in buffer osmotically balanced with mannitol. SCN- was the most efficient anion to facilitate entry. Uptake studies with radioactively labeled anions showed that SCN- was transported into cells 3 times faster than Cl-, while the entry of SO2-4 occurred much more slowly. The anion transport inhibitors 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid and piretanide inhibited entry at low pH even in the presence of permeant anions. When cells with bound toxin were exposed to low pH in the absence of permeant anions, then briefly exposed to neutral pH and subsequently exposed to pH 4.5 in the presence of isotonic NaCl, toxin entry was induced. The data indicate that efficient anion transport at the time of exposure to low pH is required for entry of surface-bound diphtheria toxin into the cytosol. Since insertion of diphtheria toxin into the membrane occurs even in the absence of permeant anions, the results indicate that low pH is required not only for insertion of fragment B into the membrane, but also for the subsequent entry of fragment A into the cytosol.  相似文献   

4.
When the enzymatically active A-fragment of diphtheria toxin is translocated to the cytosol, the B-fragment inserts into the membrane in such a way that a 25-kDa polypeptide becomes shielded from proteases added to the external medium. We have attempted to determine the boundaries of this polypeptide within the toxin B-fragment as well as the topology of the B-fragment in the membrane. Chemical cleavage of the 25-kDa polypeptide with hydroxylamine and o-iodosobenzoic acid yielded fragments of sizes indicating that the 25-kDa polypeptide starts at residue approximately 300 and extends to the COOH-terminal end. Experiments where the toxin was labeled with [35S]cysteine at distinct positions of the B-fragment supported this conclusion. Treatment of cells with inserted B-fragment with L-1-tosyl-amido-2-phenylethyl chloromethyl ketone-treated trypsin and with V8 protease from Staphylococcus aureus yielded protected 27- and 30-kDa fragments in addition to 25 kDa, indicating that the region 240-264 is also at the outside. The topology of the inserted B-fragment is discussed.  相似文献   

5.
H Stenmark  S McGill  S Olsnes    K Sandvig 《The EMBO journal》1989,8(10):2849-2853
Diphtheria toxin B-fragment binds to cell-surface receptors and facilitates translocation of the enzymatically active A-fragment to the cytosol. In this process the B-fragment inserts into the plasma membrane and induces formation of cation-selective channels. We examined the ability of a number of diphtheria toxin-derived molecules translated in vitro to permeabilize cells. Two proteins consisting of the whole B-fragment and small parts of the A-fragment, and one protein comprising most of the B-fragment alone, were more efficient than full-length toxin in permeabilizing the plasma membrane to monovalent cations. Two shorter B-fragment-derived proteins, with 3 and 10 kd N-terminal deletions, permeabilized the cells to sulfate and sucrose in addition to monovalent cations. The relationship between channel formation and toxin translocation is discussed.  相似文献   

6.
A number of protein toxins act by translocating an enzymatically active polypeptide to the cytosol. The translocation process is best understood in the case of diphtheria toxin which binds to cell surface receptors, is then taken up by endocytosis and is subsequently translocated to the cytosol, where it inactivates elongation factor 2. The translocation of the enzymatically active part of the toxin can be induced at the level of the plasma membrane upon exposure to low pH of cells with surface-bound toxin. Receptor molecules appear to be involved in the translocation process, which also requires an inward directed H(+)-gradient and permeant anions. Cation-selective channels are formed in the membrane upon toxin entry. The B-fragment alone is much more efficient in inducing channels than the whole toxin. The current model of the translocation process is discussed.  相似文献   

7.
Diphtheria toxin contains a trypsin-sensitive region with 3 closely spaced arginines in the sequence (Asn189, Arg190, Val191, Arg192, Arg193, Ser194). Cleavage of the toxin to yield A- and B-fragments ("nicking") appears to occur in a stochastic manner after either of these arginine residues. Isoelectric focusing of A-fragment prepared in vitro showed four bands of varying intensity with pI between 4.5 and 5.0, three of which could be accounted for by the three different cleavage sites. Exposure of cells with surface-bound toxin to pH less than 5.3 induces translocation of A-fragment to a position where it is shielded from external Pronase, presumably in the cytosol. A-fragment translocated in this manner had the same pI as the most acidic A-fragments, indicating that only A-fragments lacking both Arg192 and Arg193 are translocation-competent. This was confirmed by amino acid sequencing. Treatment of A-fragment with carboxypeptidase B eliminated the two bands with the highest pI while there was a concomitant increase in the bands corresponding to the two most acidic A-fragments. Such treatment of nicked diphtheria toxin increased the amount of translocated A-fragment and the ability of toxin to form cation-selective pores in the cell membrane. The site of trypsin cleavage therefore appears to be one of the factors limiting toxin entry to the cytosol.  相似文献   

8.
The dependence of active transport of H+ on the presence of anions in synaptic vesicle membranes from rat brain was studied. The H+ transport was measured by monitoring the acidification of the vesicles with a permeant weak base-acridine orange. The fluorescence changes in the latter were proportional to the magnitude of artificially imposed pH gradients (delta pH). The ATP-dependent generation of delta pH was completely dependent on the presence of a permeant anion, was maximal at 150 mM Cl- and was inhibited, when the medium osmolarity was further increased by sucrose or KCl. At 150 mM only Br-, similar to Cl-, behaved as permeant anions, whereas I- was effective only at low (5-20 mM) concentrations. The anions--SCN-, ClO4-, HSO3- and I-(10-20 mM) as well as 4-acetamido-4'-isothiocyanatostilbene-2.2'-disulfonate (K0.5 = 14 microM) blocked the ATP-dependent generation of delta pH observed in the presence of Cl-, while other anions tested (F-, phosphate, bicarbonate, some organic anions) were virtually without effect and did not support the H+ transport. The dependence of the rate and extent of H+ accumulation on Cl- concentration was sigmoidal with a Hill coefficient of 2.8 and a Km value of 85-90 mM. The effects of anions point to the presence in the membrane of synaptic vesicles of an anion (chloride) channel whose conductance can regulate the H+ transport by switching it from an electrogenic to an electroneutral (coupled entry of H+ and Cl-) mode of operation.  相似文献   

9.
The role of specific receptors in the translocation of diphtheria toxin A fragment to the cytosol and for the insertion of the B fragment into the cell membrane was studied. To induce nonspecific binding to cells, toxin was either added at low pH, or biotinylated toxin was added at neutral pH to cells that had been treated with avidin. In both cases large amounts of diphtheria toxin became associated with the cells, but there was no increase in the toxic effect. There was also no increase in the amount of A fragment that was translocated to the cytosol, as estimated from protection against externally added Pronase E. In cells where specific binding was abolished by treatment with 12-O-tetradecanoyl-phorbol 13-acetate, trypsin, or 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid, unspecific binding did not induce intoxication or protection against protease. This was also the case in untreated L cells, which showed no specific binding of the toxin. When Vero cells with diphtheria toxin bound to specific receptors were exposed to low pH, the cells were permeabilized to K+, whereas this was not the case when the toxin was bound nonspecifically at low pH or via avidin-biotin. The data indicate that the cell-surface receptor for diphtheria toxin facilitates both insertion of the B fragment into the cell membrane and translocation of the A fragment to the cytosol.  相似文献   

10.
A fusion protein of acidic fibroblast growth factor and diphtheria toxin A-fragment was disulfide-linked to the toxin B-fragment. The complex bound specifically to diphtheria toxin receptors, and subsequent exposure to low pH induced the fusion protein to translocate to the cytosol. Heparin, inositol hexaphosphate and inorganic sulfate strongly increased the trypsin resistance of the growth factor part of the fusion protein, indicating tight folding, and they prevented translocation of the fusion protein to the cytosol. The data indicate that only a more disordered form of the growth factor is translocation competent.  相似文献   

11.
When cells with surface-bound diphtheria toxin were exposed to pH 4.5, the toxin became shielded against lactoperoxidase-catalyzed radioiodination, indicating that the toxin was inserted into the membrane. Cells thus treated had strongly reduced ability to take up 36Cl-, 35SO4(2-), and [14C]SCN-. The reduction of chloride uptake was strongest at neutral pH, whereas that of sulfate was strongest at acidic pH. Lineweaver-Burk plots indicated that the toxin treatment reduced the Jmax but not the Km for the anions. The toxin also inhibited the NaCl-stimulated efflux of 35SO4(2-), indicating that the toxin inhibits the antiporter. No inhibition was found when toxin-treated cells were not exposed to low pH, whereas exposure to pH 4.5 for 20 s induced close to maximal inhibition. Half-maximal inhibition was obtained after exposure to pH 5.4. The concentration of diphtheria toxin required to obtain maximal inhibition (0.3 micrograms/ml) was sufficient to ensure close to maximal toxin binding to the cells. Even in ATP-depleted cells and in the absence of permeant anions, low pH induced inhibition of anion antiport in toxin-treated Vero cells. There was no measurable inhibition of anion antiport in cells with little or no ability to bind the toxin.  相似文献   

12.
In sodium-free buffer of low ionic strength, the uptake of chloride and sulfate in Vero cells was found to occur mainly by antiport which was very sensitive to inhibition by 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. Efflux of anions from the cells appeared to energize the uptake. While the uptake of Cl- occurred over a wide pH range, that of SO4(2-) showed a clear maximum at pH 6-7. The rate of efflux of 36Cl- and 35SO4(2-) was strongly increased by the presence of permeant anions in the efflux buffer. Preincubation of the cells at slightly alkaline pH strongly increased the rate of C1- efflux into buffers nominally free of permeant anions, as well as the efflux by exchange. This increase did not occur if the cells were depleted for ATP during the preincubation. Depolarization of the cells reduced the rate of efflux into buffers without permeant anions, indicating that the efflux is at least partly due to net, electrogenic, anion transport. The efflux by antiport was not affected by manipulations of the membrane potential, indicating electroneutral exchange. The uptake and efflux were increased to the same extent with increasing temperature, the activation energies were Ea = 25 kcal/mol of Cl- and Ea = 12 kcal/mol of SO4(2-). Similar anion antiport appears to occur in L, baby hamster kidney, and HeLa S3 cells.  相似文献   

13.
The pH-dependent conformational change of diphtheria toxin   总被引:8,自引:0,他引:8  
Labeling by a hydrophobic photoactivatable reagent and limited proteolysis have been used to study conformational changes of diphtheria toxin related to its pH-dependent membrane insertion and translocation. TID (3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine) labels diphtheria toxin at pH 5 much more efficiently than at pH 7, both in the presence and absence of lipid vesicles. In the absence of membranes, the extent of labeling is greater and the pH dependence is stronger. As analyzed on sodium dodecyl sulfate-polyacrylamide gels and by high pressure liquid chromatography, both the A- and B-subunits and most of the cyanogen bromide fragments of the toxin are labeled by TID at acid pH. The products of trypsin cleavage of diphtheria toxin at pH 5 are different from those seen at neutral pH. Trypsin-susceptible sites were identified by gel electrophoresis of the trypsin fragments, combined with electrophoresis and high pressure liquid chromatography of CNBr digests of trypsin-treated toxin. At neutral pH, the main sites of digestion are at the junction between the A- and B-fragments and near the NH2 terminus of the A-fragment. At pH 5.2, these sites are less efficiently cut, and new sites appear near the NH2 terminus of the B-fragment, in an amphipathic portion of the sequence. Thus, even in the absence of membranes, acid pH induces a significant conformational change in diphtheria toxin. This change involves burial of some previously accessible sites, exposure of previously inaccessible sites, and the formation of hydrophobic regions over an extensive portion of the polypeptide chain.  相似文献   

14.
Diphtheria toxin (DT) is a soluble protein that translocates across hydrophobic lipid bilayers in response to low pH. The translocation activity of DT has been localized to the 40-kDa toxin B chain and can be expressed independently of the C-terminal receptor binding site. Buried hydrophobic domains in DT are thought to participate in the membrane translocation process. We have identified a mutant form of DT, CRM 102, that has a point mutation at position 308 (Pro----Ser) within one of these hydrophobic domains. CRM 102 conjugated to a monoclonal antibody against the T cell receptor, the transferrin receptor, or transferrin itself is approximately 10-fold less toxic than native DT or a control DT mutant, CRM 103, linked to the same binding moieties. Direct measurement of membrane translocation activity by exposure of cells to low extracellular pH demonstrates that CRM 102 conjugates express only 10% of the translocation activity of the control toxin conjugates. However, when CRM 102 or 102 conjugates bind and kill cells via the DT receptor, no reduction in membrane translocation activity is observed. The defect in CRM 102 is not evident in the presence of 20 mM NH4Cl. The defect in translocation also has no effect on the ratio of the lag time before protein synthesis inhibition begins to the rate of protein synthesis inhibition. Thus, the proline-serine substitution at position 308 disrupts the membrane translocation process and distinguishes between two routes of DT entry: DT receptor-mediated entry and entry mediated by alternate receptors.  相似文献   

15.
Adenylate cyclase (AC) toxin from Bordetella pertussis penetrates eukaryotic cells and upon activation by calmodulin generates unregulated levels of intracellular cAMP. The process of toxin penetration into sheep erythrocytes was resolved into three consecutive steps including insertion, translocation, and intracellular cleavage. Insertion of the toxin into the cell membrane occurred over a wide temperature range (4-36 degrees C). In contrast, translocation of the toxin, i.e. transfer of the NH2-terminal catalytically active fragment across the membrane, occurred only above 20 degrees C and was highly temperature-dependent. While a single exposure of the toxin to Ca2+ was sufficient for its insertion into the plasma membrane, toxin translocation required exogenous Ca2+ at mM concentrations. Translocation was not affected by pretreatment of cells with trypsin, N-ethylmaleimide, and sodium carbonate at alkaline pH. The NH2-terminal fragment of the toxin was cleaved in the cell releasing the 45-kDa active AC into the cytosol. The cleavage was blocked by treatment of cells with N-ethylmaleimide. It is hypothesized that the COOH-terminal portion of the toxin creates in the membrane a channel through which the NH2-terminal fragment is translocated.  相似文献   

16.
The membrane insertion of diphtheria toxin and of its B chain mutants crm 45, crm 228 and crm 1001 has been followed by hydrophobic photolabelling with photoactivatable phosphatidylcholine analogues. It was found that diphtheria toxin binds to the lipid bilayer surface at neutral pH while at low pH both its A and B chains also interact with the hydrocarbon chains of phospholipids. The pH dependence of photolabelling of the two protomers is different: the pKa of fragment B is around 5.9 while that of fragment A is around 5.2. The latter value correlates with the pH of half-maximal intoxication of cells incubated with the toxin in acidic mediums. These results suggest that fragment B penetrates into the bilayer first and assists the insertion of fragment A and that the lipid insertion of fragment B is not the rate-controlling step in the process of membrane translocation of diphtheria toxin. crm 45 behaves as diphtheria toxin in the photolabelling assay but, nonetheless, it is found to be three orders of magnitude less toxic than diphtheria toxin on acid-treated cells, suggesting that the 12-kDa COOH-terminal segment of diphtheria toxin is important not only for its binding to the cell receptor but also for the membrane translocation of the toxin. It is suggested that crm 1001 is non-toxic because of a defect in its membrane translocation which occurs at a lower extent and at a lower pH than that of the native toxin; as a consequence crm 1001 may be unable to escape from the endosome lumen into the cytoplasm before the fusion of the endosome with lysosomes.  相似文献   

17.
Diphtheria toxin belongs to a group of toxic proteins that enter the cytosol of animal cells. We have here investigated the effect of NH2-terminal extensions of diphtheria toxin on its ability to become translocated to the cytosol. DNA fragments encoding peptides of 12-30 amino acids were fused by recombinant DNA technology to the 5'-end of the gene for a mutant toxin. The resulting DNA constructs were transcribed and translated in vitro. The translation products were bound to cells and then exposed to low pH to induce translocation across the cell membrane. Under these conditions all of the oligopeptides tested, including three viral peptides and the leader peptide of diphtheria toxin, were translocated to the cytosol along with the enzymatic part (A-fragment) of the toxin. Neither hydrophobic nor highly charged sequences blocked translocation. The results are compatible with a model in which the COOH-terminus of the A-fragment first crosses the membrane, whereas the NH2-terminal region follows behind. The possibility of using nontoxic variants of diphtheria toxin as vectors to introduce peptides into the cytosol to elicit MHC class I-restricted immune response and clonal expansion of the relevant CD8+ cytotoxic T lymphocytes is discussed.  相似文献   

18.
Ion fluxes associated with translocation of diphtheria toxin across the surface membrane of Vero cells were studied. When cells with surface-bound toxin were exposed to low pH to induce toxin entry, the cells became permeable to Na+, K+, H+, choline+, and glucosamine+. There was no increased permeability to Cl-, SO4(-2), glucose, or sucrose, whereas the uptake of 45Ca2+ was slightly increased. The influx of Ca2+, which appears to be different from that of monovalent cations, was reduced by several inhibitors of anion transport and by verapamil, Mn2+, Co2+, and Ca2+, but not by Mg2+. The toxin-induced fluxes of N+, K+, and protons were inhibited by Cd2+. Cd2+ also protected the cells against intoxication by diphtheria toxin, suggesting that the open cation-selective channel is required for toxin translocation. The involvement of the toxin receptor is discussed.  相似文献   

19.
The effects of acidification of the cytosol and of electrical depolarization on the entry of diphtheria toxin were studied. Entry of the toxin from the cell surface was induced by low pH, and the presence of the toxin in the cytosol was monitored as toxin-induced inhibition of protein synthesis. To reduce the membrane potential the cells were incubated in a buffer containing a high concentration of potassium. The cytosol was acidified either by incubating the cells with acetic acid, by incubating them with ammonium chloride which was subsequently removed in the presence of amiloride to prevent pH regulation by the Na+/H+ exchanger, or by incubating the cells in isotonic KCl in the presence of nigericin and valinomycin. The results showed that when the cytosol was acidified by either method toxin entry was inhibited, while a reduction in the membrane potential did not strongly interfere with the entry. A pH gradient across the membrane of at least 1 pH unit was required for entry. Possibly this gradient acts as a driving force for diphtheria toxin entry.  相似文献   

20.
Acidification and ion permeabilities of highly purified rat liver endosomes   总被引:7,自引:0,他引:7  
While it is well established that acidic pH in endosomes plays a critical role in mediating the orderly traffic of receptors and ligands during endocytosis, little is known about the bioenergetics or regulation of endosome acidification. Using highly enriched fractions of rat liver endosomes prepared by free flow electrophoresis and sucrose density gradient centrifugation, we have analyzed the mechanism of ATP-dependent acidification and ion permeability properties of the endosomal membrane. This procedure permitted the isolation of endosome fractions which were up to 200-fold enriched as indicated by the increased specific activity of ATP-dependent proton transport. Acidification was monitored using hepatocyte and total liver endosomes selectively labeled with pH-sensitive markers of receptor-mediated endocytosis (fluorescein isothiocyanate asialoorosomucoid) or fluid-phase endocytosis (fluorescein isothiocyanate-dextran). In addition, changes in membrane potential accompanying ATP-dependent acidification were directly measured using the voltage-sensitive fluorescent dye Di-S-C3(5). Our results indicate that ATP-dependent acidification of liver endosomes is electrogenic, with proton transport being accompanied by the generation of an interior-positive membrane potential opposing further acidification. The membrane potential can be dissipated by the influx of permeant external anions or efflux of internal alkali cations. Replacement externally of permeable anions with less permeable anions (e.g. replacing Cl- with gluconate) diminished acidification, as did replacement internally of a more permeant cation K+ with less permeant species (such as Na+ or tetramethylammonium). ATP-dependent H+ transport was not coupled to any specific anion or cation, however. The endosomal membrane was found to be extremely permeable to protons, with protons able to leak out almost as fast as they are pumped in. Thus, the internal pH of endosomes is likely to reflect a dynamic equilibrium of protons regulated by the intrinsic ion permeabilities of the endosomal membrane, in addition to the activity of an ATP-driven proton pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号