首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Phylogenetic relationships in the Gentianales with focus on Loganiaceae sensu lato are evaluated using parsimony analyses of nucleotide sequence data from the plastid genes rbcL and ndhF. Inter- and intrafamilial relationships in the Gentianales, which consist of the families Apocynaceae (including Asclepiadaceae), Gelsemiaceae, Gentianaceae, Loganiaceae, and Rubiaceae, are studied and receive increased support from the combination of rbcL and ndhF data, which indicate that the family Rubiaceae forms the sister group to the successively nested Gentianaceae, Apocynaceae, and Loganiaceae, all of which are well supported. The family Gelsemiaceae forms a distinct, supported group sister to Apocynaceae. The Loganiaceae sensu stricto form a strongly supported group consisting of 13 genera: Antonia, Bonyunia, Gardneria, Geniostoma, Labordia, Logania, Mitrasacme, Mitreola, Neuburgia, Norrisia, Spigelia, Strychnos, and Usteria. These genera form two well-supported lineages. Several members of Loganiaceae sensu Leeuwenberg and Leenhouts, i.e., Androya, Peltanthera, Plocosperma, Polypremum, and Sanango are clearly not members of the Gentianales. The earlier exclusion of Buddlejaceae (including Buddleja, Emorya, Gomphostigma, and Nicodemia) as well as the reclassification of the genera Nuxia and Retzia to Stilbaceae of the Lamiales are all well supported.  相似文献   

2.
Gentianales consist of Apocynaceae, Gelsemiaceae, Gentianaceae, Loganiaceae, and Rubiaceae, of which the majority are woody plants in tropical and subtropical areas. Despite extensive efforts in reconstructing the phylogeny of Gentianales based on molecular data, some interfamily and intrafamily relationships remain uncertain. We reconstructed the genus-level phylogeny of Gentianales based on the supermatrix of eight plastid markers (rbcL, matK, atpB, ndhF, rpl16, rps16, thetrnL-trnF region, and atpB-rbcL spacer) and one mitochondrial gene (matR) using maximum likelihood. The major clades and their relationships retrieved in the present study concur with those of previous studies. All of the five families of Gentianales are monophyletic with strong support. We resolved Rubiaceae as sister to the remaining families in Gentianales and showed support for the sister relationship between Loganiaceae and Apocynaceae. Our results provide new insights into relationships among intrafamilial clades. For example, within Rubiaceae we found that Craterispermeae were sister to Morindeae + (Palicoureeae + Psychotrieae) and that Theligoneae were sister to Putorieae. Within Gentianaceae, our phylogeny revealed that Gentianeae were sister to Helieae and Potalieae, and subtribe Lisianthiinae were sister to Potaliinae and Faroinae. Within Loganiaceae, we found Neuburgia as sister to Spigelieae. Within Apocynaceae, our results supported Amsonieae as sister to Melodineae, and Hunterieae as sister to a clade comprising Plumerieae + (Carisseae + APSA). We also confirmed the monophyly of Perplocoideae and the relationships among Baisseeae + (Secamonoideae + Asclepiadoideae).  相似文献   

3.
Phylogenetic analyses of 33 genera of Rubiaceae were performed using morphological and a few chemical characters. Parsimony analysis based on 29 characters resulted in eight equally parsimonious trees, with a consistency index of 0.40 and a retention index of 0.69. These results were compared to a phylogenetic analysis of the same genera based on chloroplast DNA restriction site data. There are discrepancies between the two analyses, but if we consider groupings reflected in the present classification there is much congruency. With the exception of four genera, all the genera are positioned in the same group of taxa in the two analyses. Clades of taxa representing three of the four subfamilies (~the Antirheoideae, ~the Rubioideae, and the ~Ixoroideae) are monophyletic, while the fourth subfamily Cinchonoideae is shown to be paraphyletic. Both analyses support a widened tribe Chiococceae, including the former subtribe Portlandiinae (Condamineeae). Furthermore, in both analyses the tribe Hamelieae is placed outside the subfamily Rubioideae where it is now housed. In search for the most plausible sister group to the Rubiaceae, the genus Cinchona (Rubiaceae) was analyzed together with 13 genera of the Loganiaceae, Nerium (Apocynaceae), and Exacum (Gentianaceae). Cornus (Comaceae), Olea (Oleaceae), and these two genera together were used as outgroups. The analysis, including 25 characters, 16 taxa, and with Cornus and Olea together as an outgroup, resulted in four equally parsimonious trees, with a consistency index of 0.53 and a retention index of 0.62. The non-Loganiaceae taxa Cinchona (Rubiaceae), Nerium (Apocynaceae), and Exacum (Gentianaceae) were all found to have their closest relatives within the Loganiaceae indicating that the Loganiaceae are paraphyletic and ought to be reclassified. As a result of the morphological data the most plausible sister group to the Rubiaceae is the tribe Gelsemieae of the Loganiaceae.  相似文献   

4.
The family Asclepiadaceae (Dicotyledones) was created by Brown in 1810 by splitting in two the family Apocynaceae of Jussieu established in 1789. The morphological characters used to make this distinction were mainly palynological, such as presence of tetrads or pollinia and number and orientation of pollinia. Those characters, still used in higher taxonomic delimitation (families, subfamilies, and tribes), are here critically reexamined and compared to a molecular phylogeny obtained with one of the more variable plastid genes (matK) of 46 species in the order Gentianales. In this molecular phylogeny, Asclepiadaceae form a monophyletic group derived from within Apocynaceae. Each of the subfamilies of Asclepiadaceae is monophyletic and based on reliable palynological characters, but palynological characters are not useful to delimit tribes of the subfamily Asclepiadoideae. Based on the molecular data, these tribes have undergone parallelisms in several reproductive traits.  相似文献   

5.
6.
The genus Lecidea Ach. sensu lato (sensu Zahlbruckner) includes almost 1200 species, out of which only 100 species represent Lecidea sensu stricto (sensu Hertel). The systematic position of the remaining species is mostly unsettled but anticipated to represent several unrelated lineages within Lecanoromycetes. This study attempts to elucidate the phylogenetic placement of members of this heterogeneous group of lichen-forming fungi and to improve the classification and phylogeny of Lecanoromycetes. Twenty-five taxa of Lecidea sensu lato and 22 putatively allied species were studied in a broad selection of 268 taxa, representing 48 families of Lecanoromycetes. Six loci, including four ribosomal and two protein-coding genes for 315- and 209-OTU datasets were subjected to maximum likelihood and Bayesian analyses. The resulting well supported phylogenetic relationships within Lecanoromycetes are in agreement with published phylogenies, but the addition of new taxa revealed putative rearrangements of several families (e.g. Catillariaceae, Lecanoraceae, Lecideaceae, Megalariaceae, Pilocarpaceae and Ramalinaceae). As expected, species of Lecidea sensu lato and putatively related taxa are scattered within Lecanoromycetidae and beyond, with several species nested in Lecanoraceae and Pilocarpaceae and others placed outside currently recognized families in Lecanorales and orders in Lecanoromycetidae. The phylogenetic affiliations of Schaereria and Strangospora are outside Lecanoromycetidae, probably with Ostropomycetidae. All species referred to as Lecidea sensu stricto based on morphology (including the type species, Lecidea fuscoatra [L.] Ach.) form, with Porpidia species, a monophyletic group with high posterior probability outside Lecanorales, Peltigerales and Teloschistales, in Lecanoromycetidae, supporting the recognition of order Lecideales Vain. in this subclass. The genus name Lecidea must be redefined to apply only to Lecidea sensu stricto and to include at least some members of the genus Porpidia. Based on morphological and chemical similarities, as well as the phylogenetic relationship of Lecidea pullata sister to Frutidella caesioatra, the new combination Frutidella pullata is proposed here.  相似文献   

7.
Cheliped construction, in particular the teeth pattern on chelae fingers is considered as most important character suit (along with burrowing/swimming apparatus) for the diagnosis of Portunoidea. Heterochelic and heterodontic chelipeds with the molariform tooth in the larger chela and multi-lobed serial teeth are presumably ancestral and most common pattern for the group. New material (mostly species of Thalamitinae Paulson, 1875, Lupocyclus Adamd and White, 1848 and Portunus Weber, 1795 sensu lato) have been combined with the existing sequences from the GenBank to produce molecular phylogenetic reconstructions based on the histone H3 gene fragment and a multi-gene tree (for smaller set of species) based on partial sequences of H3, D1 region of 28S gene and mitochondrial COI gene. These reconstructions have not provided necessary support to the monophyly of Portunoidea sensu lato but indicated the presence of several monophyletic lineages, i.e. Portunidae sensu stricto, Polybiidae + Thiidae + Carcinidae + Pirimelidae, Benthochascon + Geryonidae (to lesser extent), and Ovalipes. Monophyly of the Portunidae sensu stricto is supported by both the H3 and multigene trees and morphological evidence. Swimming capacity probably evolves as a result of parallel evolution in at least three different lineages of portunoids. A new version of the family level classification of Portunoidea and a key to their families are provided with the following taxa: Geryonidae (Geryoninae + Benthochasconinae subfam. nov.), Ovalipidae fam. nov., Brusiniidae Štev?i?, 1991, Thiidae, Pirimelidae, Carcinidae McLeay, 1838 (Carcininae + Portumninae Ortmann, 1893), Polybiidae Ortmann, 1893, and Portunidae Rafinesque, 1815 sensu stricto. The most radical change in the systematics of Portunidae sensu stricto is the final recognition of the polyphyly of Portunus sensu lato and the need for revalidization and re-diagnozing of several taxa that were synonymized by Stephenson and Campbell (1959) and Stephenson (1972) under Portunus. While some subfamilies of the Portunidae (Podophthalminae Dana, 1851, Thalamitinae, and Lupocyclinae Alcock, 1895) are well supported by molecular phylogenies and the presence of morphological synapomorphies, the others need re-assessment.  相似文献   

8.
Abstract: The phylogeny of the families Lecanoraceae and Bacidiaceae (Lecanorales, Ascomycota) was investigated using 29 nuclear small subunit ribosomal DNA sequences, 9 of which were newly determined. The data set contained 368 variable characters, 234 of which were parsimony-informative. Phylogenetic estimations were performed with maximum parsimony and maximum likelihood optimality criteria. In the most parsimonious and most likely reconstructions, the Bacidiaceae sensu Hafellner 1988 forms a monophyletic group and the Lecanoraceae sensu Hafellner a paraphyletic group. The genera Tephromela and Scoliciosporum appear to belong outside these families. However, the hypothesis that the Lecanoraceae sensu Hafellner is monophyletic cannot be rejected, as indicated by a Kishino-Hasegawa test. Three hypotheses were rejected by Kishino-Hasegawa tests, viz. (1) that the Lecanoraceae and Bacidiaceae together form a monophyletic group; (2) that both the Lecanoraceae (incl. Scoliciosporum ) and Bacidiaceae (incl. Tephromela ) are monophyletic; and (3) that the ascus apex anatomy reflects phylogeny. The suborder Lecanorineae is paraphyletic unless the Stereocaulaceae and Cladoniaceae are included. One or both of the Bacidia and Lecanora types of ascus have probably evolved at least twice.  相似文献   

9.
Minute granules of sporopollenin, called orbicules, can be observed on the innermost tangential and/or radial walls of secretory tapetum cells. Orbicules were investigated in 53 species of 34 Gentianaceae genera using light microscopy, scanning electron microscopy and transmission electron microscopy. This selection covered all different tribes and subtribes recognized in Gentianaceae (87 genera, +/-1650 species). Orbicules were found in 38 species (23 genera) distributed among the six tribes recognized in Gentianaceae. The orbicule typology is based on those described previously in Rubiaceae. Of the six orbicule types described previously, Type II orbicules are lacking. Type III orbicules are most common (17 species). Hockinia Gardner is the only representative with Type I orbicules. The number of representatives with orbicules belonging to the other orbicule types are equally distributed among the species studied: seven species possess Type IV orbicules, six species Type V and six species Type VI. The systematic usefulness of this typology is discussed in comparison with the latest systematic insights within the family, and palynological trends in Gentianaceae. Orbicule data have proven to be useful for evaluating tribal delimitation within Rubiaceae and Loganiaceae s.l.; however, they seem not to be useful for tribal delimitation in Gentianaceae. In the tribes Potalieae and Gentianeae orbicule data may be useful at subtribal level.  相似文献   

10.
11.
Scale insects (Hemiptera: Sternorrhyncha: Coccoidea) are a speciose and morphologically specialized group of plant-feeding bugs in which evolutionary relationships and thus higher classification are controversial. Sequences derived from nuclear small-subunit ribosomal DNA were used to generate a preliminary molecular phylogeny for the Coccoidea based on 39 species representing 14 putative families. Monophyly of the archaeococcoids (comprising Ortheziidae, Margarodidae sensu lato, and Phenacoleachia) was equivocal, whereas monophyly of the neococcoids was supported. Putoidae, represented by Puto yuccae, was found to be outside the remainder of the neococcoid clade. These data are consistent with a single origin (in the ancestor of the neococcoid clade) of a chromosome system involving paternal genome elimination in males. Pseudococcidae (mealybugs) appear to be sister to the rest of the neococcoids and there are indications that Coccidae (soft scales) and Kerriidae (lac scales) are sister taxa. The Eriococcidae (felt scales) was not recovered as a monophyletic group and the eriococcid genus Eriococcus sensu lato was polyphyletic.  相似文献   

12.
The monophyly and phylogenetic relationships of the Cephalaspidea sensu lato ( sensu   Burn and Thompson 1998 ) have been investigated by means of Bayesian, parsimony and distance analyses of nuclear (18S rRNA and 28S rRNA) and mitochondrial cytochrome oxidase I (COI) genes.
Results revealed the presence of three monophyletic groups among the Cephalaspidea s. l. (i) Architectibranchia ( sensu   Haszprunar 1985 , in part: including Acteonidae and Aplustridae, but excluding Diaphanidae), (ii) Cephalaspidea including Diaphanidae but not Runcinidae (both previously of uncertain systematic affinity), and (iii) Runcinacea.
The monophyly of the architectibranch families Acteonidae (represented by Acteon and Pupa ) and Aplustridae ( Hydatina and Micromelo ); of the runcinacean family Runcinidae ( Runcina ); and of the cephalaspidean families Aglajidae ( Chelidonura , Aglaja , Odontoglaja , Navanax and Philinopsis ), Bullidae ( Bulla ), Gastropteridae ( Siphopteron and Sagaminopteron ), Haminoeidae ( Atys , Haminoea , Phanerophthalmus and Smaragdinella, but not Ventomnestia ), and Retusidae ( Retusa and Pyrunculus , but not Volvulella ) is suggested. The families Scaphandridae ( Scaphander ) and Rhizoridae ( Volvulella ) are reinstated as valid. A new phylogenetic classification of the Cephalaspidea is proposed.  相似文献   

13.
A molecular systematic study of Scrophulariaceae sensu lato using DNA sequences of three plastid genes (rbcL, ndhF, and rps2) revealed at least five distinct monophyletic groups. Thirty-nine genera representing 24 tribes of the Scrophulariaceae s.l. (sensu lato) were analyzed along with representatives of 15 other families of Lamiales. The Scrophulariaceae s.s. (sensu stricto) include part or all of tribes Aptosimeae, Hemimerideae, Leucophylleae, Manuleae, Selagineae, and Verbasceae (= Scrophularieae) and the conventional families Buddlejaceae and Myoporaceae. Veronicaceae includes all or part of tribes Angelonieae, Antirrhineae, Cheloneae, Digitaleae, and Gratioleae and the conventional families Callitrichaceae, Globulariaceae, Hippuridaceae, and Plantaginaceae. The Orobanchaceae include tribes Buchnereae, Rhinantheae, and the conventional Orobanchaceae. All sampled members of Orobanchaceae are parasitic, except Lindenbergia, which is sister to the rest of the family. Family Calceolariaceae Olmstead is newly erected herein to recognize the phylogenetic distinctiveness of tribe Calceolarieae. The Calceolariaceae are close to the base of the Lamiales. The Stilbaceae are expanded by the inclusion of Halleria. Mimulus does not belong in any of these five groups.  相似文献   

14.
Petal venation in families related to the Asteraceae was studied by means of light microscopy. The group of study was delimited on the base of previously published molecular data and includes the Alseuosmiaceae, Apiaceae, Aquifoliaceae, Araliaceae, Argophyllaceae, Bruniaceae, Brunoniaceae, Calyceraceae, Campanulaceae sensu lato , Caprifoliaceae, Donatiaceae, Dipsacaceae, Escalloniaceae, Goodeniaceae, Griseliniaceae, Menyanthaceae, Pentaphragmataceae, Pittosporaceae, Sambucaceae, Sphenocleaceae, Stylidiaceae, Valerianaceae, and Viburnaceae. The Calyceraceae, Goodeniaceae, and Menyanthaceae are very similar to the Asteraceae in their petal venation. One feature common to these four families but not found in any other group is the prominent marginal veins entering the petal independently of the midvein, but meeting it at the apex of the petal. Other morphological data as well as gene sequence data suggest that these four families form a monophyletic group. The other investigated families show a wide array of venation types, but they are all very different from the Asteraceae. Typical for die Campanulaceae sensu lato is a densely reticulate pattern. The Dipsacaceae, Valerianaceae and some Caprifoliaceae are characterized by well-developed transpetal veins.  相似文献   

15.
A cladistic analysis of the saprophytic genus Voyria Aubl. (Gentianaceae) was performed to evaluate infrageneric classification, character evolution, and biogeography. A matrix of 19 species of Voyria and 39 morphological characters yielded three most-parsimonious trees, one of which was identical to their strict consensus. The major division within Voyria based on character support is also the rooting point suggested by a larger cladistic analysis of gentians. We have chosen to treat these distinct clades as two new subgenera, Voyria subgen. Voyria Aubl. and Voyria subgen. Leiphaimos (Schltdl. & Cham.) V. A. Albert & L. Struwe, stat. nov. Concerning character evolution, Voyria subgen. Voyria (5 spp.) is the most similar to other Gentianaceae. The saprophytic condition is more advanced in Voyria subgen. Leiphaimos (14 spp.), in which stomates and a continuous vascular cylinder are lacking. Within subgen. Leiphaimos, trends toward extreme vascular reduction and wind-mediated seed dispersal are evident. The extensive character evolution observed within Voyria as a whole may correlate with relaxation of autotrophic structural constraints. Optimization of an area of distribution character on the cladograms obtained suggests that Guayana (and therefore northern South America) may represent the most ancestral area for extant Voyria.  相似文献   

16.
A phylogenetic analysis of Passifloraceae sensu lato was performed using rbcL, atpB, matK, and 18S rDNA sequences from 25 genera and 42 species. Parsimony analyses of combined data sets resulted in a single most parsimonious tree, which was very similar to the 50% majority consensus tree from the Bayesian analysis. All nodes except three were supported by more than 50% bootstrap. The monophyly of Passifloraceae s.l. as well as the former families, Malesherbiaceae, Passifloraceae sensu stricto, and Turneraceae were strongly supported. Passifloraceae s.s. and the Turneraceae are sisters, and form a strongly supported clade. Within Passifloraceae s.s., the tribes Passifloreae and Paropsieae are both monophyletic. The intergeneric relationships within Passifloraceae s.s. and Turneraceae are roughly correlated with previous classification systems. The morphological character of an androgynophore/gynophore is better used for characterizing genera grouping within Passifloraceae s.s. Other morphological characters such as the corona and aril are discussed.  相似文献   

17.
We present a phylogenetic investigation of the Northern Clade, the major monophyletic clade within the freshwater fish family Cobitidae, one of the most prominent families of freshwater fishes found in Asian and European waters. Phylogenetic reconstructions based on the cytochrome b and RAG-1 genes show the genera Microcobitis, Sabanejewia, Koreocobitis and Kichulchoia as monophyletic groups. These reconstructions also show a Cobitis sensu lato and a Misgurnus sensu lato group. The Cobitis sensu lato group includes all species of Cobitis, Iksookimia, Niwaella and Kichulchoia, while the Misgurnus sensu lato group includes Misgurnus, Paramisgurnus and Koreocobitis. Although the monophyly of both the Cobitis sensu lato and Misgurnus sensu lato groups is supported, relationships within the groups are incongruent with current generic definitions. The absence of monophyly of most genera included in the Cobitis sensu lato group (Cobitis, Iksookimia and Niwaella) or their low genetic differentiation (Kichuchoia) supports their consideration as synonyms of Cobitis. Molecular phylogenies indicate that the Asian species of Misgurnus experienced a mitochondrial introgression from a lineage of Cobitis. We also find two nuclear haplotypes in the same Cobitis species from the Adriatic area that, in the absence of morphological differentiation, may indicate molecular introgression. Most lineages within the Northern Clade consist of species found in East Asia. However, some lineages also contain species from Europe and Asia Minor. The phylogenetic relationships presented here are consistent with previous studies suggesting an East Asian origin of the Northern Clade. According to the current distributions and phylogenetic relationships of the Misgurnus sensu lato and Cobitis clade lineages, particularly of M. fossilis and C. melanoleuca, the range expansion of East Asian species into Europe was most likely via Siberia into Northern and Central Europe. Phylogenetic analyses also show that the Cobitis sensu lato group consists of two clear subgroups (I and II), each presenting geographical differences. Subgroup I is distributed exclusively in East Asian drainages with an Eastern European offshoot (C. melanoleuca), whereas Subgroup II includes species widespread throughout Europe (including the Mediterranean), Asia Minor, the Black Sea and the Caucasus, with some lineages related to species restricted to East Asia.  相似文献   

18.
The Asclepiadaceae, as traditionally defined, have repeatedly been shown to be an apomorphic derivative of the Apocynaceae. It has often been recommended that the Asclepiadaceae be subsumed within the Apocynaceae in order to make the latter monophyletic. To date, however, no comprehensive, unified classification has been established. Here we provide a unified classification for the Apocynaceae, which consists of 424 genera distributed among five subfamilies: Rauvolfioideae, Apocynoideae, Periplocoideae, Secamonoideae, and Asclepiadoideae. Keys to the subfamilies and tribes are provided, with lists of genera that (as far as we have been able to ascertain) are recognized in each tribe.  相似文献   

19.
A phylogenetic study of Asteridae sensu lato was conducted based on chloroplast ndhF gene sequences for 116 ingroup and 13 outgroup species. Prior molecular studies based on rbcL sequences identified terminal groups corresponding to families, but were unable to resolve relationships among them. These results are largely consistent with earlier rbcL studies, but provide much greater resolution and stronger bootstrap support throughout the tree. The parsimony analysis found eight equally parsimonious trees, all of which recognize four major clades with the following relationship: (Cornales (Ericales (Euasterids I, Euasterids II))). Euasterids I includes (Garryales ((Solanales, Boraginaceae) (Gentianales, Lamiales))), although with weak support for relationships among the named clades. Euasterids II includes (Aquifoliales (Asterales (Apiales, Dipsacales))) with strong support for these relationships. Relationships within Ericales are weakly supported and merit further attention.  相似文献   

20.
Phytochemical study on Neolamarckia cadamba (Roxb.) Bosser has yielded ten indole alkaloids, neolarmarckine A-E (1–5), cadamine (6), 3β-isodihydrocadambine (7), angustine (8) and naulafine (9) and harmane (10). The structural elucidation of all the compounds were conducted based on the thorough analysis of spectroscopic data and comparison with reported data. The chemotaxonomic significance of all these compounds were summarized. Among all the indole alkaloids, compound 3–5 were new compounds and isolated from Neolamarckia cadamba (Roxb.) Bosser for the first time. Compounds 1 and 2 were only found in Neolamarckia species while compounds 6 and 7 were only isolated from the family of Rubiaceace. Besides, compound 8 has been found in six genera of Rubiaceae and two genera of Apocynaceae while compound 9 was isolated from Neolamarkia species for the first time. Compound 10 can be found in many genera of Rubiaceae and also more than ten families such as Zygophyllaceae, Cyperaceae, Passifloraceae, Bignoniaceae, Sapotaceae, Elaeagnaceae, Leguminosae, Loganiaceae, Apocynaceae, Combretaceae, Chenopodiaceae, Commelinaceae and Polygalaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号