首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Epigenetic modifications of cytosine residues in the DNA play a critical role for cellular differentiation and potentially also for aging. In mesenchymal stromal cells (MSC) from human bone marrow we have previously demonstrated age-associated methylation changes at specific CpG-sites of developmental genes. In continuation of this work, we have now isolated human dermal fibroblasts from young (<23 years) and elderly donors (>60 years) for comparison of their DNA methylation profiles using the Infinium HumanMethylation27 assay. In contrast to MSC, fibroblasts could not be induced towards adipogenic, osteogenic and chondrogenic lineage and this is reflected by highly significant differences between the two cell types: 766 CpG sites were hyper-methylated and 752 CpG sites were hypo-methylated in fibroblasts in comparison to MSC. Strikingly, global DNA methylation profiles of fibroblasts from the same dermal region clustered closely together indicating that fibroblasts maintain positional memory even after in vitro culture. 75 CpG sites were more than 15% differentially methylated in fibroblasts upon aging. Very high hyper-methylation was observed in the aged group within the INK4A/ARF/INK4b locus and this was validated by pyrosequencing. Age-associated DNA methylation changes were related in fibroblasts and MSC but they were often regulated in opposite directions between the two cell types. In contrast, long-term culture associated changes were very consistent in fibroblasts and MSC. Epigenetic modifications at specific CpG sites support the notion that aging represents a coordinated developmental mechanism that seems to be regulated in a cell type specific manner.  相似文献   

3.
Preventing transcriptional gene silencing by active DNA demethylation   总被引:6,自引:0,他引:6  
Kapoor A  Agius F  Zhu JK 《FEBS letters》2005,579(26):5889-5898
  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Progression to malignancy requires that cells overcome senescence and switch to an immortal phenotype. Thus, exploring the genetic and epigenetic changes that occur during senescence/immortalization may help elucidate crucial events that lead to cell transformation. In the present study, we have globally profiled DNA methylation in relation to gene expression in primary, senescent and immortalized mouse embryonic fibroblasts. Using a high-resolution genome-wide mapping technique, followed by extensive locus-specific validation assays, we have identified 24 CpG islands that display significantly higher levels of CpG methylation in immortalized cell lines as compared to primary murine fibroblasts. Several of these hypermethylated CpG islands are associated with genes involved in the MEK–ERK pathway, one of the most frequently disrupted pathways in cancer. Approximately half of the hypermethylated targets are developmental regulators, and bind to the repressive Polycomb group (PcG) proteins, often in the context of bivalent chromatin in mouse embryonic stem cells. Because PcG-associated aberrant DNA methylation is a hallmark of several human malignancies, our methylation data suggest that epigenetic reprogramming of pluripotency genes may initiate cell immortalization. Consistent with methylome alterations, global gene expression analysis reveals that the vast majority of genes dysregulated during cell immortalization belongs to gene families that converge into the MEK–ERK pathway. Additionally, several dysregulated members of the MAP kinase network show concomitant hypermethylation of CpG islands. Unlocking alternative epigenetic routes for cell immortalization will be paramount for understanding crucial events leading to cell transformation. Unlike genetic alterations, epigenetic changes are reversible events, and as such, can be amenable to pharmacological interventions, which makes them appealing targets for cancer therapy when genetic approaches prove inadequate.  相似文献   

18.
19.
20.
Dermal fibroblasts are responsible for the production of the extracellular matrix that undergoes significant changes during the skin aging process. These changes are partially controlled by the TGF-β signaling, which regulates tissue homeostasis dependently on several genes, including CTGF and DNA methyltransferases. To investigate the potential differences in the regulation of the TGF-β signaling and related molecular pathways at distinct developmental stages, we silenced the expression of TGFB1, TGFB3, TGFBR2, CTGF, DNMT1, and DNMT3A in the neonatal (HDF-N) and adult (HDF-A) human dermal fibroblasts using the RNAi method. Through Western blot, we analyzed the effects of the knockdowns of these genes on the level of the CTGF, TGFBR2, and DNMT3A proteins in both cell lines. In the in vitro assays, we observed that CTGF level was decreased after knockdown of DNMT1 in HDF-N but not in HDF-A. Similarly, the level of DNMT3A was decreased only in HDF-N after silencing of TGFBR2, TGFB3, or DNMT1. TGFBR2 level was lower in HDF-N after knockdown of TGFB3, DNMT1, or DNMT3A, but it was higher in HDF-A after TGFB1 silencing. The reduction of TGFBR2 after silencing of DNMT3A and vice versa in neonatal cells only suggests the developmental stage-specific interactions between these two genes. However, additional studies are needed to explain the dependencies between analyzed proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号